Вычисление интеграла фукции f (x) (методом Симпсона WinWord)
| Категория реферата: Рефераты по математике
| Теги реферата: законодательство реферат, ответы по тетради
| Добавил(а) на сайт: Ilarija.
Предыдущая страница реферата | 1 2 3 4
Блок 1. Начало программы;
Блок 2. Очистка экрана;;
Блок 3. Запрос на ввод значений А и В;
Блок 4. Ввод значений А и В с клавиатуры;
Блок 5. Вызов процедуры вывода графика функции на экран;
Блок 6. Установка начального значения счётчика отрезков равным 3;
Блок 7. Вычисление значения начального значения интеграла методом трапеций;
Блок 8. Запоминание предыдущего значения интеграла, вычисленного методом трапеций, увеличение значения числа отрезков на 2, вычисление следующего значения интеграла методом трапеций;
Блок 9. Проверка условия : абсолютное значение разности текущего и предыдущего значений интегрирования меньше чем 0.001, если да, то выход из цикла, если нет, то переход на блок 8.
Блок 10. Вывод результатов, полученных при вычислении интеграла методом трапеций на экран.
Блок 11. Установка начального значения счётчика отрезков равным 3;
Блок 12. Вычисление значения начального значения интеграла методом
Симпсона;
Блок 13. Запоминание предыдущего значения интеграла, вычисленного методом Симпсона, увеличение значения числа отрезков на 2, вычисление следующего значения интеграла методом Симпсона;
Блок 14. Проверка условия: абсолютное значение разности текущего и предыдущего значений интегрирования меньше чем 0.001, если да, то выход из цикла, если нет, то переход на блок 13.
Блок 15. Вывод результатов, полученных при вычислении интеграла методом Симпсона на экран.
Блок 16. Конец программы.
5. Текст программы
program tr_s;
uses crt,graph;
var a,b:real; { Границы отрезка } r,r2:real; { Предыдущее и текущее приближенные значения интеграла} n:integer; { Счетчик }
{ Интегрируемая функция }
function f(x:real):real;
begin f:=1/(x*ln(x)*0.43429);
end;
{ Метод трапеций }
function trap(a,b:real;n:integer):real;
var s:real; { Полученная сумма } h:real; { Шаг } m:integer; { Счетчик }
begin h:=(b-a)/(n-1); { Определяется шаг } s:=(f(a)+f(b))/2; { Начальное значение суммы } for m:=1 to n-2 do s:=s+f(a+m*h); { Суммиование остальных элементов} trap:=s*h; { Возвращается значение интеграла }
end;
{ Метод Симпсона }
function simpson(a,b:real;n:integer):real;
var s:real; { Сумма } h:real; { Шаг } m:integer; { Счетчик } mn:integer; { Очередной множитель }
begin h:=(b-a)/(n-1); { Рассчитывается шаг } s:=f(a)+f(b); { Начальное значение шага } mn:=4; { Первый мнодитель - 4 }
{ Суммирование остальных элементов } for m:=1 to n-2 do begin s:=s+mn*f(a+h*m); if (mn=4) then mn:=2 else mn:=4;{ Именение мноителя 24 } end; simpson:=s*h/3; { Возвращается вычисленное значение }
end;
{ Процедура вычисления порядка числа }
procedure norm(a:real);
var n:real;
begin
{ Если число слишком мало - возвращается ноль } if (a0.01 then dlty:=20 else dlty:=0;
{ Расчет масштабов } mx:=500/(xmax-xmin); my:=400/(ymax-ymin);
{ Расчет приращения по X } sx:=(xmax-xmin)/550;
{ Вывод системы координат } settextjustify(1,1); xx:=xmin; repeat setcolor(1); line(trunc(40+mx*(xx-xmin)+dltx),20,trunc(40+mx*(xx-xmin)+dltx),469); str(xx:4:2,s); setcolor(15); outtextxy(trunc(40+mx*(xx-xmin)+dltx),475,s); xx:=xx+50*sx; until (xx>(xmax+50*sx)); yy:=ymin+(ymax-ymin)/10; repeat setcolor(1); line(41,trunc(470-my*(yy-ymin)-dlty),630,trunc(470-my*(yy-ymin)-dlty)); str(yy:4:2,s); setcolor(15); outtextxy(20,trunc(470-my*(yy-ymin)-dlty),s); yy:=yy+(ymax-ymin)/10; until (yy>(ymax+(ymax-ymin)/10)); line(40,0,40,480); line(0,470,640,470); line(40,0,38,10); line(40,0,42,10); line(640,470,630,472); line(640,470,630,468);
{ Вывод графика } xx:=xmin; repeat yy:=f(xx); putpixel(trunc(40+mx*(xx-xmin)+dltx),trunc(470-my*(yy-ymin)-dlty),7); xx:=xx+sx; until (xx>xmax); outtextxy(300,10,' Press ESC to continue '); repeat until (readkey=#27); closegraph;
end;
{ Основная программа }
begin
{ Ввод границ отрезков } clrscr; write(' Введите A,B: '); readln(a,b);
{ Выводится график функции } out_grp(a,b,f(b),f(a));
{ Вычисляется интеграл по методу трапеций } n:=3; r:=trap(a,b,n); { Начальное значение } repeat r2:=r; { Запоминается предыдущее значение } n:=n+2; { Увеличивается количество шагов } r:=trap(a,b,n); { Рассчитывается новое значение } until (abs(r-r2)
Скачали данный реферат: Захарьин, Grebennikov, Юганцев, Туполев, Izmajlov, Lukashenko.
Последние просмотренные рефераты на тему: шпаргалки по химии, мцыри сочинение, грибы реферат, доклад образование.
Категории:
Предыдущая страница реферата | 1 2 3 4