Высшая математика
| Категория реферата: Рефераты по математике
| Теги реферата: шпоры по уголовному, оформление реферата
| Добавил(а) на сайт: Богдана.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
Функциональные ряды.
Определение. Частными (частичными) суммами функционального ряда называются функции
Определение. Функциональный ряд называется сходящимся в точке (х=х0), если в этой точке сходится последовательность его частных сумм. Предел последовательности называется суммой ряда в точке х0.
Определение. Совокупность всех значений х, для которых сходится ряд называется областью сходимости ряда.
Определение. Ряд называется равномерно сходящимся на отрезке [a,b], если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.
Теорема. (Критерий Коши равномерной сходимости ряда)
Для равномерной сходимости ряда необходимо и достаточно, чтобы для любого числа e>0 существовал такой номер N(e), что при n>N и любом целом p>0 неравенство
выполнялось бы для всех х на отрезке [a,b].
Определение. Рядом Фурье для функции f(x) называется тригонометрический ряд, коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье функции f(x) сходится к ней во всех ее точках непрерывности, то говорят, что функция f(x) разлагается в ряд Фурье.
Достаточные признаки разложимости в ряд Фурье.
Теорема. (Теорема Дирихле) Если функция f(x) имеет период 2p и на отрезке
[-p;p] непрерывна или имеет конечное число точек разрыва первого рода, и отрезок
[-p;p] можно разбить на конечное число отрезков так, что внутри каждого из них функция f(x) монотонна, то ряд Фурье для функции f(x) сходится при всех значениях х, причем в точках непрерывности функции f(x) его сумма равна f(x), а в точках разрыва его сумма равна , т.е. среднему арифметическому предельных значений слева и справа. При этом ряд Фурье функции f(x) сходится равномерно на любом отрезке, который принадлежит интервалу непрерывности функции f(x).
Функция f(x), для которой выполняются условия теоремы Дирихле называется кусочно – монотонной на отрезке [-p;p].
Теорема. Если функция f(x) имеет период 2p, кроме того, f(x) и ее производная f’(x) – непрерывные функции на отрезке [-p;p] или имеют конечное число точек разрыва первого рода на этом отрезке, то ряд Фурье функции f(x) сходится при всех значениях х, причем в точках непрерывности его сумма равна f(x), а в точках разрыва она равна . При этом ряд Фурье функции f(x) сходится равномерно на любом отрезке, который принадлежит интервалу непрерывности функции f(x).
Функция, удовлетворяющая условиям этой теоремы, называется кусочно – гладкой на отрезке [-p;p].
Разложение в ряд Фурье непериодической функции.
Задача разложения непериодической функции в ряд Фурье в принципе не отличается от разложения в ряд Фурье периодической функции.
Допустим, функция f(x) задана на отрезке [a, b] и является на этом отрезке кусочно – монотонной. Рассмотрим произвольную периодическую кусочно – монотонную функцию f1(x) c периодом 2Т ³ ïb-aï, совпадающую с функцией f(x) на отрезке [a, b].
y
f(x)
a - 2T a a b a+2T a + 4T x
Таким образом, функция f(x) была дополнена. Теперь функция f1(x) разлагается в ряд Фурье. Сумма этого ряда во всех точках отрезка [a, b] совпадает с функцией f(x), т.е. можно считать, что функция f(x) разложена в ряд Фурье на отрезке [a, b].
Таким образом, если функция f(x) задана на отрезке, равном 2p ничем не отличается от разложения в ряд периодической функции. Если же отрезок, на котором задана функция, меньше, чем 2p, то функция продолжается на интервал (b, a + 2p) так, что условия разложимости в ряд Фурье сохранялись.
Вообще говоря, в этом случае продолжение заданной функции на отрезок (интервал) длиной 2p может быть произведено бесконечным количеством способов, поэтому суммы получившихся рядов будут различны, но они будут совпадать с заданной функцией f(x) на отрезке [a,b]
Свойства равномерно сходящихся рядов.
Рекомендуем скачать другие рефераты по теме: шпаргалки по уголовному, контрольные работы по математике.
Категории:
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата