Высшая математика
| Категория реферата: Рефераты по математике
| Теги реферата: шпоры по уголовному, оформление реферата
| Добавил(а) на сайт: Богдана.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Пример. Определить сходимость ряда
Вывод: ряд сходится.
Нормальные системы обыкновенных дифференциальных уравнений.
Определение. Совокупность соотношений вида:
где х- независимая переменная, у1, у2,…,уn – искомые функции, называется системой дифференциальных уравнений первого порядка.
Определение. Система дифференциальных уравнений первого порядка, разрешенных относительно производных от неизвестных функций называется нормальной системой дифференциальных уравнений.
Такая система имеет вид:
(1)
Для примера можно сказать, что график решения системы двух дифференциальных уравнений представляет собой интегральную кривую в трехмерном пространстве.
Теорема. (Теорема Коши). Если в некоторой области (n-1) –мерного пространства функции … непрерывны и имеют непрерывные частные производные по , то для любой точки этой области существует единственное решение
системы дифференциальных уравнений вида (1), определенное в некоторой окрестности точки х0 и удовлетворяющее начальным условиям
Определение. Общим решением системы дифференциальных уравнений вида (1) будет совокупность функций , , … , которые при подстановке в систему (1) обращают ее в тождество
Ряды с неотрицательными членами.
При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами.
Теорема. Для сходимости ряда с неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены.
Признак сравнения рядов с неотрицательными членами.
Пусть даны два ряда и при un, vn ³ 0.
Теорема. Если un £ vn при любом n, то из сходимости ряда следует сходимость ряда , а из расходимости ряда следует расходимость ряда .
Доказательство. Обозначим через Sn и sn частные суммы рядов и . Т.к. по условию теоремы ряд сходится, то его частные суммы ограничены, т.е. при всех n sn < M, где М – некоторое число. Но т.к. un £ vn, то Sn £ sn то частные суммы ряда тоже ограничены, а этого достаточно для сходимости.
Также используется следующий признак сходимости:
Теорема. Если и существует предел , где h – число, отличное от нуля, то ряды и ведут одинаково в смысле сходимости.
Признак Коши. (радикальный признак)
Если для ряда с неотрицательными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство
Рекомендуем скачать другие рефераты по теме: шпаргалки по уголовному, контрольные работы по математике.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата