Образовательный портал Claw.ru
Всё для учебы, работы и отдыха
» Шпаргалки, рефераты, курсовые
» Сочинения и изложения
» Конспекты и лекции
» Энциклопедии

где Eb, Ep – энергии активации скоростей деления и роста, ab, ab – соответствующие предэкспоненциальные множители, T – абсолютная температура.

На рис. 2а приведена кривая зависимости tc , рассчитанная по уравнению (24) с помощью эмпирических параметров ab , ab и Eb, Ep. Модельная кривая качественно правильно описывает наблюдаемую закономерность [14- 16].

Подставляя аррениусовские выражения коэффициентов b и p в уравнение (20) получают формулу для расчета зависимости времени роста D t12 популяции до разных ступеней развития (разные c2/c1).

На рис. 2б приведены кривые зависимости D t12 , рассчитанные по уравнению (20) с помощью эмпирических параметров ab , ab и Eb, Ep. Модельные кривые качественно правильно описывают экспериментально наблюдаемые зависимости [14-16].

Claw.ru | Рефераты по науке и технике | Биологическое время и его моделирование в квазихимическом пространстве

а) б)

Рис. 2. Кривые температурной зависимости длительности развития элементов разных уровней: а) длительность клеточного цикла, рассчитанная по уравнению (24); б) длительности разных стадий развития популяции, рассчитанные по уравнению (20).

Модель (12) дает возможность проверить для популяции применимость функции Бакмана [14]:

LogH = k log2T,

(25)

где H – скорость роста популяции, T – время роста, k < 0 –нормировочная постоянная.>

В аналитическом виде функцию Бакмана можно получить, подставляя в (25) выражения H и T, равные, соответственно, правым частям уравнений (14) (при w1 =0) и (16). При этом получают зависимость (25) как явную функцию роста, выражаемого переменной величиной c1 при заданном начальном значении c0. На рис. 4 приведен соответствующий график. Согласно (25), логарифм скорости роста должен быть пропорционален квадрату логарифма времени роста. Однако, как следует из рис. 4, такая зависимость для двухстадийной популяции не наблюдается.

Claw.ru | Рефераты по науке и технике | Биологическое время и его моделирование в квазихимическом пространстве

Рис. 3. Функция роста Бакмана (25), построенная на основе двухстадийной модели (16) динамики популяции.

ЛИТЕРАТУРА

1. Акчурин И.А. Единство естественнонаучного знания. М., 1974.

2. Левич А.П. // Конструкции времени в естествознании. М., 1996. С. 9-27, 235-288.

3. Шаров А.А. // Конструкции времени в естествознании. М., 1996. С. 96-111.

4. Мейен С.В. // Системность и эволюция. М., 1984. С. 7-32.

5. Ершов Ю.А.// Ж. Физ. химии. 1999. Т.73. № 10, с. 1817 – 1823.

6. Ершов Ю.А.// Ж. Физ. Химии, 2000, т. 74, № 6, с. 1087-1093.

7. Ершов Ю.А. Термодинамика квазиравновесий в биологических системах. М., ВИНИТИ, 1983. 140 с.

8. Гудвин Б. Аналитическая физиология клеток и развивающихся организмов. М.:Мир,1979,288 с.

9. Ершов Ю.А.// Докл. РАН. 1997. Т.72. № 5. с. 627-629.

10. Ершов Ю.А.// Ж. Физ. химии. 1998. Т. 352. № 3. с.553-559.

11. Ершов Ю.А. и др. Кинетика и термодинамика биохимических и физиологических процессов. М., Медицина,1990, 155с.

12. Романовский ю. м., Степанова Н.В., Чернавский Д.С. Математическая биофизика. М. Наука. 1984. - 304 с.


Рекомендуем скачать другие рефераты по теме: реферат на тему понятие, автомобили реферат доход реферат.


Категории:




Предыдущая страница реферата | 1  2  3  4  5  6 |


Поделитесь этой записью или добавьте в закладки

   



Рефераты от А до Я


Полезные заметки

  •