Механизмы и несущие конструкции радиоэлектронных средств
| Категория реферата: Рефераты по науке и технике
| Теги реферата: изложение дубровский, диплом купить
| Добавил(а) на сайт: Nechaev.
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата
6.4. Определение закона движения механизма.
6.4.1. Динамика - раздел динамического анализа, посвященный определению законов движения звеньев M. Закон движения - зависимость кинематических параметров от времени:
s = s (tau) ; v = v (tau) ; w = w (tau) ;
fi = fi (tau) ; omega = omega (tau) ; eps=eps (tau) ; (6.12)
где s, v, w - линейные, fi, omega, eps - угловые параметры движения.
Сущность метода определение законов движения звеньев и всего M сводится к интегрированию дифференциальных уравнений
F = m* (d2s/dtau2) или T = J* (d2fi/dtau2), являющихся выражением второго закона механики (закона Ньютона) .
Особенность определения законов движения звеньев:
а) многочисленность звеньев в сложных M, поэтому для каждого звена могут быть свои законы движения;
б/ связанность звеньев и следовательно, их движений.
6.4.2. Определение закона движения звена приведения. Чтобы оперировать минимальным числом параметров, в механизме выделяют звено приведения - какое-либо из звеньев, характер движения которого простейший: движение это прямолинейное или вращательное. Влияние массовых характеристик остальных звеньев и действующих на них усилий учитывают с помощью приведенных параметров, значения которых определяют из условий энергетической эквивалентности звена приведения и всего М. Это значит, что энергия и характер ее изменения для звена приведения и для всего M в каждый момент времени одинаковы.
6.4.3. Приведенные массовые характеристики. При поступательном движении звена приведения со скоростью (v) пр приведенную массу (m) пр находят из условия равенства кинематических энергий звена и всего M, в котором массы mi совершают поступательные движения со скоростями vi, а моменты инерции Jk - вращательные со скоростями omegak :
(m)пр = sum{ mi*[vi/ (v)пр]**2 } + sum{ Jk*[omegak/ (v)пр]**2 }. (6.13)
Соотношения vi/ (v)пр и omegak/ (v)пр представляют собой функции скорости для звеньев M, определенные по отношению к звену приведения, поэтому приведенная масса - переменная величина, определяемая функцией положения M - формой и размерами звеньев и их взаимными положениями.
Если звено приведения вращается со скоростью (omega) пр, оно должно обладать приведенным моментом инерции
(J)пр = sum{ mi*[vi/ (omega) пр]**2 } +
+ sum{ Jk*[omegak/ (omega) пр]**2 }, (6.14)
который также определяется функцией положения.
6.4.4. Приведенные силовые характеристики. Это - приведенная сила и приведенный момент, определяемый из условий равенства мощностей на звене приведения и во всем M . Приведенная сила
(F)пр = sum{ Fi*[vi/ (v)пр]**2 } + sum{ Tk*[omegak/ (v)пр]**2 }; (6.15)
приведенный момент
(T)пр = sum{ Fi*[vi/ (omega) пр]**2 } +
+ sum{ Tk*[omegak/ (omega) пр]**2 }; (6.16)
6.4.5. Уравнение движения звена приведения. Может быть получено из условия эквивалентности изменения энергии и работы на некотором элементарном перемещении (обычно учитывают только кинетическую энергию E подвижных звеньев) :
dA = dE = T*dfi ; dA = dE = F*ds,
где dA - элементарная работа на элементарном перемещении dfi или ds,
Рекомендуем скачать другие рефераты по теме: изложение на тему, решебник по английскому языку.
Категории:
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата