Нестандартные задачи в курсе школьной математики (неполное и избыточное условие)
| Категория реферата: Рефераты по педагогике
| Теги реферата: курсовая работа по менеджменту, контрольная по русскому
| Добавил(а) на сайт: Шеншин.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
4. Задачи с противоречивым условием – задачи, содержащие в условии противоречие между данными. [9, с. 124-150]
В.А.Крутецкий описывает исследование, которое он с группой
исследователей проводил во многих школах СССР в течение 12 лет с 1955 по
1966 годы. Исследователи использовали задачи различных типов, среди которых
были и приведённые в этой классификации, в качестве тестовых заданий для
выявления психологических аспектов математических способностей школьников.
По результатам этого исследования получилось, что сильные ученики
справляются с задачами указанных типов практически самостоятельно, быстро, практически без помощи испытателя. Ученики средних способностей также
неплохо справляются с подобными заданиями, однако для их решения им
требуется больше времени и иногда наводящий вопрос, наталкивающий на
решение. Слабые ученики практически не могли самостоятельно провести
решение этих задач, не видели связи между объектами задачи, и даже с
подсказкой испытателя не могли справиться с заданием.
Следует отметить, что именно с указанными типами задач исследователи связывали наибольшие надежды.
В книге Д.Пойа "Как решать задачу" приводится похожая классификация, отличающаяся лишь тем, что в ней отсутствуют задачи с несформированным составом условия. Более того, в своей таблице, направленной в помощь решателю, Д.Пойа первыми пунктами поставил вопросы: Возможно ли удовлетворить условию? Достаточно ли условие для определения неизвестного? или недостаточно? или чрезмерно? или противоречиво?
Вроде бы Пойа предполагает решение самых обычных, школьных задач, однако он не исключает возможности наличия некоторых "аномалий" в условии задачи, к существованию которых ученики должны быть готовы.
П.Эрдниев в своей книге [24, с.24,40] предлагает использовать в обучении математике задачи с неполным составом условия ещё с младших классов, причём он считает, что использование таких задач (деформированных примеров, как он их называет) позволяет проводить обучение опережающими темпами, с их помощью можно коренным образом изменить мыслительные процессы решающего, превратив их в более сложные, более содержательные и потому лучше развивающие способности ученика.
У Н.Метельского встречается такая классификация задач. Между условием
задачи (А) и её требованием (Х) может быть различное соотношение, определяющее число решений. Обычно школьная задача имеет одно или несколько
определённых решений и потому называется определённой. Этот тип задачи
условно можно изобразить формулой импликации А=>Х, которую будем понимать
так, что условие А содержит достаточно и только достаточно данных для
выполнения требования Х. Если из условия А какое–либо данное опустить, то
получим неопределённую задачу. Она имеет бесконечное множество решений, зависящих от бесконечного множества значений той величины (параметра), которой принадлежало значение, выброшенное из условия. Наконец, условие
может содержать, кроме А, некоторое дополнительное данное, и тогда задача
называется переопределённой. В частном случае это "лишнее" данное может
вытекать из тех, что уже имеются в задаче, и тогда задача оказывается
определённой задачей. В остальных случаях переопределённая задача не имеет
решения, поскольку её данные противоречат друг другу, несовместимы.
Основные функции задач в обучении выполняют определённые задачи, однако
известную пользу, по мнению Н.Метельского, приносит учащимся знакомство с
неопределёнными и переопределёнными задачами. [14, с.176(177]
Задачи из рассматриваемой классификации полезны тем, что: они не обладают алгоритмичностью решения, они активизируют умственную деятельность учащихся, заставляют их искать нестандартные подходы к решению задач, а также допускают как несколько способов решения, так и несколько решений вообще.
В подтверждение этого мнения интересные факты приводит в своей статье
"Остроугольный или тупоугольный?" И.Дегтянникова. Она пишет: "Решая задачу, часто даже не задумываемся о реальности её условия. Поэтому правы те
авторы, которые включают в свои учебники задачи с нереальными условиями.
Это заставляет проверять условия у всех задач. Кроме того, нереальные
задачи – это готовая проблемная ситуация». [4]
Отсутствие указанных задач в школьных учебниках приводит к тому, что и учителя не ориентируют свои умения на такие задачи, в результате чего их педагогическая подготовка содержит изъяны.
В заметке [5] В.Игнатенко пишет об ошибке, найденной в учебнике [1]. В
этом учебнике на с.135 приведена задача 536(б). Вот её текст: "Отрезок BD
является биссектрисой треугольника АBC. Найдите DC, если AB=30, AD=20,
BD=16 и (BDC=(C.
Вроде бы ничего особенного в этой задаче нет. Однако автор, проведя
решение двумя различными способами, заметил, что ответы в них не совпадают.
Попытка смоделировать треугольник с данными, указанными в задаче, показала, что данные содержали противоречие. Оказывается, маститые авторы популярного
учебника, включив противоречивую задачу в свой учебник, не заметили её
противоречивости, как не замечали её и тысячи учителей, несколько лет
работавших по этому учебнику.
Присутствие такой задачи (пока что только одной) в учебнике геометрии
– только на пользу ученикам и учителям. Жаль, что эта задача – результат
случайной оплошности авторского коллектива, а не результат её закономерного
выбора.
Как пишет М.Буловацкий в своей статье [2], школьник, как правило, игнорирует важные вопросы о переизбыточности, недостаточности или противоречивости задач, так как задачи из школьных учебников не требуют размышления над такими вопросами, потому что в них практически всегда имеется столько данных, сколько необходимо для решения. И это является, по мнению М.Буловацкого, серьёзным недостатком математического образования школьников.
По результатам эксперимента, описанного в статье, переопределённые (с избыточным составом условия) или неопределённые (с недостатком данных) задачи ставят большинство школьников в тупик, из которого они зачастую не в состоянии выбраться. И это затруднение возникает в связи с тем, что у школьников не отработан навык отбора и предварительной оценки данных задачи. Как считает М.Буловацкий, отработке этого навыка нужно уделять специальное учебное время. [2]
Итак, анализ литературных источников выявляет важную для
математического образования проблему: многие педагоги–исследователи
указывают на целесообразность использования в обучении задач с
«аномальными» условиями, а авторы учебников на это указание почти не
реагируют.
Нас заинтересовала эта проблема с разных точек зрения. Во–первых, насколько полезно включение таких задач в школьный курс математики?
Во–вторых, нужно ли специальное обучение учащихся решению таких задач? И
если нужно, то каковы методические особенности такого обучения?
Поискам ответов на эти вопросы и посвящена настоящая работа.
I. Как ученики реагируют на «аномальные» задачи?
(констатирующие эксперименты)
Предварительно мы показали, что многие известные в педагогике учёные считают полезным включение неопределённых и переопределённых задач в процесс обучения. Почему же большинство учебников уделяет такое слабое внимание этим задачам? Может быть, учащиеся и без специального обучения в состоянии решать такие задачи? По крайней мере, выводы В.Крутецкого близки к утвердительному ответу. Но имеются и другие мнения.
Чтобы ответить на этот вопрос, был проведён ряд констатирующих экспериментов в разных классах.
Так, в период педагогической практики в 1997 году был проведен небольшой эксперимент в средней школе № 3 г. Орша.
Ученикам 6 класса, в составе которого на момент проведения
эксперимента было 25 человек, на самостоятельной работе в качестве
дополнительного задания была предложена следующая задача: в прямоугольнике
стороны равны 8,4 см и 3,9 см, а периметр 24,6 см. Найти площадь
прямоугольника. При решении этой задачи в классе выделилось несколько
групп: 1 ученик не решил её вообще, мотивировав это тем, что не успел этого
сделать; 2 ученика решили эту задачу полностью с объяснением того, почему
они не использовали при решении задачи данный в ней периметр, но не
проверили, соответствует ли данная длина периметра длинам сторон; 1 ученик
(кстати, участник областной олимпиады по математике) решил эту задачу
полностью и проверил соответствие в ней данных друг другу, но при этом
возился с решением около 10 минут, а остальные ученики просто написали
ответ к задаче без каких бы то ни было объяснений к нему.
После решения задания с учеником, полностью решившим задачу, была
проведена беседа о том, с какими трудностями он столкнулся в процессе
решения задачи, и выяснилось, что, решая эту задачу, он вначале думал, что
в задаче даны два прямоугольника, площадь одного из которых он нашел сразу
же и долго вычислял, как можно выразить площадь прямоугольника через его
периметр. Но потом проверил, что длина периметра полностью соответствует
длинам сторон, и решил, что в задаче речь идет об одном и том же
прямоугольнике, а периметр дан только для того, чтобы запутать решение. На
следующем уроке класс изъявил желание узнать, как же правильно решается эта
задача. Им было подробно объяснено, что периметр в задаче является лишним
данным и его не нужно использовать для решения, но в данной ситуации длины
сторон в задаче соответствуют периметру, что бывает не всегда и требует
проверки. После чего была предложена для решения задача аналогичного
характера, но содержащая противоречие в тексте: в прямоугольнике длины
сторон равны 6,7 см и 4,2 см, а площадь равна 25,3 кв. см. Требуется найти
периметр прямоугольника. Как и ожидалось, все 25 учащихся решили эту задачу
без использования площади и записали ответ. Все посчитали, что площадь в
задаче является лишним данным, но никто не счёл нужным проверить, соответствуют ли данные друг другу. Результат самостоятельной работы
(отсутствие "пятёрок" в работе с несложными задачами) заставил их всё же
задуматься. Очередная беседа на ту же тему была воспринята ими уже с
большим вниманием и пониманием. Учащиеся с большим интересом стали
относиться к "не таким" (их определение) задачам, а позже и сами стали
сочинять задачи с лишними данными, предлагая их друг другу и учителю как на
уроках, так и вне уроков.
Рекомендуем скачать другие рефераты по теме: сочинения по литературе, контрольная работа 10 класс.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата