Розробка управляючого і операційног вузлів ЕОМ
| Категория реферата: Рефераты по радиоэлектронике
| Теги реферата: сочинение рассказ, отчет по практике
| Добавил(а) на сайт: Каллиник.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
Недоліком такого АЛП є подвійна довжина суматора і його регістрів.
2. Ділення з нерухомим дільником і зсувом вліво діленого.
Цей спосіб дозволяє будувати АЛП з суматором одиночної довжини
(малюнок 6-8, б).
малюнок 6-8, б (Каган стр. 214)
Тут нерухомий дільник Y зберігається в PгY, а ділене X, зсуваючись вліво відносно Y, знаходиться в двох регістрах: старші розряди X – в Pг1X,
а молодші – в Pг2X. Ділення починається з зсуву вліво діленого X шляхом косої передачі його в PгCm і Pг3X і відповідних прямих передач в Pг1X. Далі на вхід суматора подається зсунуте вліво ділене, утворюється частковий залишок шляхом підсумовуванням додаткового коду дільника, і наступна цифра частки заноситься в звільнений при зсуві X розряд Pг2X.
Арифметично-логічний пристрій розглянутого типу широко застосовується для ділення.
Алгоритм ділення з нерухомим дільником з відновленням залишку.
1. Берутся модулі від діленого і дільника.
2. Початкове значення часткового залишку покладається рівним старшим розрядам діленого.
3. Частковий залишок подвоюється шляхом зсуву на один розряд вліво.
При цьому в звільнений при зсуві молодший розряд часткового залишку заноситься наступна цифра діленого.
4. З зсунутого часткового залишку віднімається дільник і аналізується знак результату віднімання.
5. Наступна цифра модуля частки рівна 1, якщо результат віднімання додатній, і 0, якщо від’ємний. В останньому випадку значення остачі відновлюється до того, яке було до віднімання.
6. Пункти 3, 4 і 5 послідовно виконуються для одержання всіх цифр модуля частки.
7. Знак частки плюс, якщо знаки діленого і дільника однакові, в іншому випадку – мінус.
Розглянемо тепер більш детально ділення в АЛП з нерухомим дільником.
Структурна схема АЛП дана на малюнку 6-9.
малюнок 6-9 (Каган стр. 215)
Схема містить: суматор Cm; вхідний регістр Pг1 для збереження дільника; вхідний регістр суматора PгA, в який поступає прямий або зворотній код дільника; вихідний регістр суматора PгCm, в якому утворюється частковий залишок; регістри діленого PгB (старші розряди) і Pг2 (молодші розряди); допоміжний регістр Pг2’ для зсуву діленого, тригери знаків діленого і дільника ТгЗн1 і ТгЗн2; лічильник циклів СчЦ для підрахунку числа одержаних цифр частки. Одержані в процесі ділення цифри частки заносяться в звільнені розряди Pг2’.
Мікропрограма ділення для випадку додатніх чисел приведена на
малюнку 6-10. Пояснемо процедуру відновлення остачі.
малюнок 6-10 (Каган стр. 217)
Якщо віднімання дає від’ємний результат (См[0] = 1), то попередній частковий залишок, який зберігається в PгB, передається в PгCm, для чого попередньо обнулюється PгA. В PгCm прийом здійснюється з зсувом вліво на
1 розряд. Це забезпечує відновлення попереднього часткового залишку і зміщення його відносно дільника перед наступним відніманням.
Мікропрограма, яку ми розглядаємо, призначена для обробки додатніх чисел. А також її можна легко перетворити для обробки чисел з любими знаками,
які представленні в прямому коді. Для цього треба внести такі зміни:
Рекомендуем скачать другие рефераты по теме: диплом государственного образца, решебник 10 класс, сочинение 6 класс.
Категории:
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата