Математическое моделирование при активном эксперименте
| Категория реферата: Остальные рефераты
| Теги реферата: скачать конспект урока, банк курсовых
| Добавил(а) на сайт: Polovcev.
1 2 3 4 5 | Следующая страница реферата
Министерство образования РФ
Волгоградский государственный технический университет
Кафедра «САПР и ПК»
Курсовая работа по моделированию на тему:
«Математическое моделирование при активном эксперименте»
Выполнил: студент II-го курса группы ИВТ-263
Б******** Ю.В.
Проверил: Фоменков С.А.
Волгоград 2001
Основные положения теории планирования эксперимента.
Оптимизация технологического процесса производства любой продукции содержит важный этап - определение (отыскание) математической модели - уравнения связи выходного показателя качества изделия (целевой функции, параметра оптимизации) с параметрами этого изделия или технологического процесса (входными факторами). Модель - это упрощенная система, отражающая отдельные стороны явлений изучаемого объекта. Каждый изучаемый процесс можно описать различными моделями, при этом ни одна модель не может сделать это абсолютно полно и всесторонне. Однако использование упрощенной модели, отражающей отдельные черты исследуемого объекта, позволяет яснее увидеть взаимосвязь причин и следствий, входов и выходов, быстрее сделать необходимые выводы, принять правильные решения.
Различают физическое и математическое моделирование. При физическом моделировании исследование объекта происходит при его воспроизведении в ином масштабе. Здесь возможен количественный перенос результатов эксперимента с модели на оригинал. Однако для анализа сложных объектов и процессов, каковыми являются большинство электронных схем, конструкций и технологических процессов производства радиоэлектронной техники, приборостроения, машиностроения и других промышленных отраслей, применение физического моделирования затруднительно, поскольку приходится использовать большое число критериев и ограничений, которые могут быть несовместимы, а зачастую и невыполнимы.
Математическое моделирование является методом качественного или количественного описания объектов или процессов, при этом реальный объект, процесс или явление упрощается, схематизируется и описывается определенным уравнением. В большинстве случаев математическая модель представляет собой уравнение регрессии, то есть геометрическое место точек математических ожиданий условных распределений целевой функции. Простейшим примером такой модели является уравнение парной корреляции, где на целевую функцию воздействует один фактор. На практике в реальном производстве на целевую функцию воздействуют много факторов и искомое уравнение регрессии становится многомерным.
Существует много методов отыскания уравнения регрессии, которые можно условно разделить на два класса: методы активного и методы пассивного эксперимента. Под активным экспериментом будем понимать эксперимент, предварительный план которого составлен так, чтобы получить максимальную информацию о целевой функции при минимальной ее дисперсии и проведении минимального числа опытов (эффективный план). Такой план (например, полный факторный эксперимент) требует искусственного одновременного варьирования всеми факторами в довольно широких пределах. Методы активного эксперимента довольно хорошо разработаны в специальном разделе математической статистики, который называется "Теория планирования эксперимента".
Под математической теорией планирования эксперимента будем понимать науку о способах составления экономных экспериментальных планов, которые позволяют извлекать наибольшее количество информации об объекте, о способах проведения эксперимента, о способах обработки экспериментальных данных, о способах использования полученных результатов для оптимизации исследуемых объектов (например, технологических процессов производства массовой продукции). Математический аппарат теории планирования эксперимента построен на сочетании методов математической статистики и методов решения экстремальных задач.
В настоящее время выделяют два основных направления теории планирования эксперимента:
1. планирование экстремальных экспериментов;
2. планирование экспериментов по выявлению механизма явлений.
В этой курсовой работе описываются в основном методы первого направления.
Любое экспериментальное исследование содержит три этапа:
1. этап постановки задачи;
2. этап планирования и проведения эксперимента;
3. анализ и интерпретация результатов.
Главной трудностью на этапе постановки задачи является переход с языка специальности на язык планирования эксперимента, на язык математики.
Построение математической модели технологического процесса в зависимости от поставленной задачи может преследовать следующие цели: минимизировать расход материала на единицу выпускаемой продукции при сохранении качества, произвести замену дорогостоящих материалов на более дешевые или дефицитных на распространение; сократить время обработки в целом или на отдельных операциях, перевести отдельные режимы в некритические зоны, снизить трудовые затраты на единицу продукции и т.п.; улучшить частные показатели и общее количество готовой продукции, повысить однородность продукции, улучшить показатели надежности и т.п.; увеличить надежность и быстродействие управления, увеличить эффективность контроля качества, создать условия для автоматизации процесса управления и т.п.
Прежде всего, необходимо выбрать зависимую переменную Y, которую впредь будем называть целевой функцией или параметром оптимизации, за который принимают один из показателей качества продукции либо по каждой технологической операции отдельно, либо по всему технологическому процессу сразу. Параметр оптимизации должен соответствовать следующим требованиям:
. параметр должен измеряться при любом изменении (комбинации) режимов технологического процесса;
Рекомендуем скачать другие рефераты по теме: конспект, государство курсовая работа.
Категории:
1 2 3 4 5 | Следующая страница реферата