Оценка конкурентоспособности товара (на примере арланской и западно-сибирской (мегионской) нефти)
| Категория реферата: Остальные рефераты
| Теги реферата: шпаргалки по уголовному, реферат металлы
| Добавил(а) на сайт: Kuchumeev.
Предыдущая страница реферата | 1 2 3 4 5 6 7
Этап 2. На основе полученных значений [pic]для каждого объекта рассчитывается агрегирующая функция:
[pic], (17) где * — некоторая бинарная операция.
Этап 3. После осуществления этапа 2 каждому j-му объекту будет соответствовать единственный числовой параметр [pic] . Для определения оптимальной точки из числа всех пробных точек необходимо выбрать пробную точку с номером j 0, для которой
[pic]. (18)
Выбор вида функций принадлежности зависит от ряда субъективных факторов, которые обязательно присутствуют, так как выбор осуществляет ЛПР.
Выбор наиболее конкурентоспособного образца продукции — частный случай многокритериальной задачи ранжирования. Необходимо внести следующие изменения:
1) ввести ограничения для значений функции принадлежности: [0; 1];
значение функции принадлежности будет характеризовать степень
удовлетворения потребности в i-й характеристике j-м образцом продукции.
Причем если [pic]= 0, то значение i-й характеристики неудовлетворительно, а
если [pic]= 1, то потребность в i-й характеристике удовлетворена полностью;
2) если нет возможности определить параметры функции принадлежности, то
рекомендуется следующая процедура. Выберем объект [pic]обладающий наилучшим
значением признака [pic]. Значение функции желательности для него составит
[pic]. Значение функции принадлежности для остальных объектов
рассчитывается по формулам (19) и (20):
[pic], (19) если улучшению признака соответствует увеличение его значения;
[pic], (20) если улучшению признака соответствует уменьшение его значения;
3) для учета различного влияния разных показателей на агрегирующую функцию преобразовать формулу (14) в следующую:
[pic], (21) где М1...M j — значение степени. Чем меньше значимость показателя, тем
больше М (значение функции принадлежности лежит в интервале [0; 1], поэтому
при возведении в бо2льшую степень получается меньший результат).
Рекомендуем наиболее значимому фактору присваивать М = 1;
4) характеристики, так же как и в способе I оценки конкурентоспособности, разбить на потребительские и экономические. Для каждой из групп найти агрегирующую функцию [pic] , которые предлагается рассчитывать как среднее геометрическое значений функции принадлежности по отдельным признакам, то есть:
[pic]; (22) где Sэк и Sп — количество экономических и потребительских показателей, соответственно.
Показатель конкурентоспособности будет равен их произведению:
[pic]. (24)
Почему в качестве бинарной операции выбрана функция среднего геометрического, а не, к примеру, среднего арифметического?
Используя формулу среднего геометрического для расчета агрегирующих функций желательности, получаем, что при неудовлетворительном значении какого-либо признака ( [pic]= 0) объект является абсолютно неконкурентоспособным (Mj = 0, следовательно, и К = 0), что соответствует действительности. Используя, например, формулу средней арифметической, в том же случае будет наблюдаться лишь незначительное снижение показателя конкурентоспособности К.
§2. Оценка конкурентоспособности арланской и западносибирской (мегионской) нефти
Сравним уровень конкурентоспособности арланской и западно-сибирской
(мегионской) нефти. Исходные данные приведены в табл. 3[10].
Определим степень конкурентоспособности западно-сибирской нефти относительно арланской.
Таблица 3. Значения основных показателей качества арланской и западно-сибирской нефти
[pic]
Расчет оценки конкурентоспособности первым (традиционным) методом представлен в табл. 4.
Таблица 4. Расчет показателя конкурентоспособности традиционным методом
[pic]
В результате расчета традиционным методом получаем, что К
Скачали данный реферат: Rudavin, Аристид, Kotov, Avdoshkin, Nabadchikov, Северин.
Последние просмотренные рефераты на тему: шпаргалки по математике, реферат на тему россия, ответы по математике, диплом система.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7