Ионный источник Кауфмана
| Категория реферата: Рефераты по технологии
| Теги реферата: шпоры на пятках, 1 класс контрольная работа
| Добавил(а) на сайт: Карданов.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
ИОС МИИ должна удовлетворять следующим требованиям: иметь максимальную прозрачность при оптимальном соотношении между диаметром отверстий и расстоянием между ними; иметь минимально возможное (при отсутствии электрического пробоя) расстояние между ускоряющей и экранирующей сетками; толщина сеток должна быть минимально возможной при обеспечении механической прочности и стабильности межсеточного расстояния с учетом разогрева до 570-670 К; сетки должны изготавливаться из тугоплавких материалов (молибден, графит) с низким коэффициентом температурного расширения и малым коэффициентом распыления;
ИОС должна юстироваться оптически для обеспечения соосности отверстий;
должно быть оптимизировано отношение потенциала плазмы и потенциалу ускоряющей сетки.
В технологических МИИ возникает необходимость нейтрализации пространственного заряда ионного потока, обусловленная, во-первых, низкой скоростью распыления диэлектрических мишеней вследствие накопления на них поверхности положительного заряда и, во-вторых, расфокусировкой ионного потока.
Нейтрализация осуществляется двумя способами:
I. На пути ионного потока размещается вольфрамовая или танталовая нить, является термоионным эмиттером. Недостатки этого метода - малый ресурс внешнего термоионного эмиттера, распыление материала нити и загрязнение обрабатываемой поверхности. Применение метода ограничено ионными пучками малого диаметра.
2. Метод "плазменного моста", состоящий в формировании вспомогательного плазменного потока, замыкающегося на ионный пучок и обеспечивающего нейтрализацию.
Многоаппертурные источники ионов серийно выпускаются в США фирмами
Veeco, Commonwelth Seintific, Ion Tech, CSC и другими в виде универсальных
автономных установок и в составе технологических систем.
3. Модификации источника Кауфмана и тенденции его развития
Для повышения однородности потока используются мультипольные системы на постоянных магнитах, в зоне полюсных наконечников которых размещаются аноды, и мультикатодные системы /4/.
Ионный источник с мультикатодной системой разработанный фирмой CSC представлен на рис.17.
Ионный источник с мультикатодной системой
[pic]
I - экстрактор, 2 - анод, 3 - электромагнит, 4 - система катодов
(мультикатоды), 5 - напуск рабочего газа, 6 - водяное охлаждение.
Рис.17
Можно выделить следующие тенденции развития технологических многолучевых источников: увеличение диаметра ионного потока; использование нескольких термокатодов с целью повышенения равномерности пространственного распределения плазмы в объеме разрядной камеры; увеличение ресурса термокатодов; применение мультипольных магнитных систем и многоанодных систем для повышения однородности плазмы в разрядной камере; нейтрализации объемного заряда ионного потока.
4. Применение ионных источников в технологии
В технологических процессах создания сверхбольших и сверхскоростных ИС
(СБИС и ССИС) широко используются ионные, ионно-плазменные и
плазмохимические процессы взаимодействия ионных потоков и
низкотемпературной плазмы с поверхность твердого тела. В универсальных
технологических системах, оборудованных ионными источниками можно проводить
многие операции очистки, ионно-пучкового травления и распыления. В
полупроводниковой микроэлектронике широко применяются технологии ионной
имплантации и реактивного ионно-лучевого травления (РИЛТ) /1/.
Применение совокупности электронно-ионных процессов, получивших общее название «элионная технология», позволяет повысить точность изготовления микроструктур, создать высокопроизводительное автоматизированное промышленное оборудование.
Ионно-лучевая обработка материалов характеризуется следующими особенностями: большая энергия активирующего воздействия пучков на материал, подвергаемый обработке; возможность управления пучками с малой инерционностью посредством электромагнитных полей; селективность активирующего воздействия; возможность управления технологическим процессом с помощью ЭВМ; ионные процессы протекают в вакууме или плазме, что гарантирует сохранение чистоты обрабатываемого материала.
В полупроводниковой ыикроэлектронине широко применяется технология ионной имплантации. Ионная имплантация - эффективный метод технологической обработки, основанный на взаимодействии управляемых потоков ионов с поверхностью твердого тела с целью изменения его свойств, связанных с атомной структурой. Установка ионной имплантации представляет собой электрофизический комплекс, генерирующий пучок с заданными свойствами, создающий возможность взаимодействия пучка с мишенью и обеспечивающий контроль и управление характеристиками пучка и объектам имплантации /5/.
Ионный источник является одним из важнейших узлов установки ионной имплантации. От конструкции источника зависит надежность и основные рабочие характеристики всей установки в целом.
Установки имплантации для производства СБИС и ССИС характеризуются широким диапазоном параметров: масса легирующих примесей 1 - 250 а.е.м. ток ионного пучка 10-9-5*10-2 А энергия ионов 5-3[103 кэB доза имплантации 109 -1017 см2 производительность до 4 м2 кремния /г
Выделяют три основных группы промышленных установок ионной имплантации: высокоэнергетические, малых и средних доз, больших доз с интенсивными ионными пучками.
Основными легирующими примесями в технологическом процессе имплантации являются такие элементы, как бор, фосфор, мышьяк, сурьма, цинк, алюминий, селен, галий. Для радиального воздействия используется водород, аргон, азот, гелий.
Рекомендуем скачать другие рефераты по теме: реферат мова, решебник 6 класс, древний египет реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата