Теория организации и системный анализ
| Категория реферата: Рефераты по теории организации
| Теги реферата: сочинение капитанская, ответы 4 класс
| Добавил(а) на сайт: Милана.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата
В нашем примере эта величина составит 1.389/3.48=0.399.
Итак, запомним, что неслучайная, детерминированная величина имеет математическое ожидание равное ей самой, нулевую дисперсию и нулевой коэффициент вариации, в то время как равномерно распределенная СВ имеет максимальную дисперсию и максимальный коэффициент вариации.
В ряде ситуаций приходится иметь дело с непрерывно распределенными СВ -
весами, расстояниями и т. п. Для них идея оценки среднего значения
(математического ожидания) и меры рассеяния (дисперсии) остается той же, что и для дискретных СВ. Приходится только вместо соответствующих сумм
вычислять интегралы. Второе отличие — для непрерывной СВ вопрос о том
какова вероятность принятия нею конкретного значения обычно не имеет смысла
— как проверить, что вес товара составляет точно 242 кг - не больше и не
меньше?
Для всех СВ — дискретных и непрерывно распределенных, имеет очень большой смысл вопрос о диапазоне значений. В самом деле, иногда знание вероятности того события, что случайная величина не превзойдет заданный рубеж, является единственным способом использовать имеющуюся информацию для системного анализа и системного подхода к управлению. Правило определения вероятности попадания в диапазон очень просто — надо просуммировать вероятности отдельных дискретных значений диапазона или проинтегрировать кривую распределения на этом диапазоне.
2 Взаимосвязи случайных событий
Вернемся теперь к вопросу о случайных событиях. Здесь методически удобнее рассматривать вначале простые события (может произойти или не произойти). Вероятность события X будем обозначать P(X) и иметь ввиду, что вероятность того, что событие не произойдет, составляет
P(X) = 1 - P(X).
{2 - 6}
Самое важное при рассмотрении нескольких случайных событий (тем более в сложных системах с развитыми связями между элементами и подсистемами) — это понимание способа определения вероятности одновременного наступления нескольких событий или, короче, — совмещения событий.
Рассмотрим простейший пример двух событий X и Y, вероятности которых составляют P(X) и P(Y). Здесь важен лишь один вопрос — это события независимые или, наоборот взаимозависимые и тогда какова мера связи между ними? Попробуем разобраться в этом вопросе на основании здравого смысла.
Оценим вначале вероятность одновременного наступления двух независимых
событий. Элементарные рассуждения приведут нас к выводу: если события
независимы, то при 80%-й вероятности X и 20%-й вероятности Y одновременное
их наступление имеет вероятность всего лишь 0.8 ( 0.2 = 0.16 или 16%
.
Итак — вероятность наступления двух независимых событий определяется произведением их вероятностей:
P(XY) = P(X) [pic]P(Y).
{2 - 7}
Перейдем теперь к событиям зависимым. Будем называть вероятность
события X при условии, что событие Y уже произошло условной вероятностью
P(X/Y), считая при этом P(X) безусловной или полной вероятностью. Столь же
простые рассуждения приводят к так называемой формуле Байеса
P(X/Y)[pic]P(Y) = P(Y/X)[pic]P(X)
{2 - 8}
где слева и справа записано одно и то же — вероятности одновременного наступления двух "зависимых" или коррелированных событий.
Дополним эту формулу общим выражением безусловной вероятности события
X:
P(X) = P(X/Y)[pic]P(Y) + P(X/Y)[pic]P(Y),
{2 - 9}
означающей, что данное событие X может произойти либо после того как событие Y произошло, либо после того, как оно не произошло (Y) — третьего не дано!
Формулы Байеса или т. н. байесовский подход к оценке вероятностных связей для простых событий и дискретно распределенных СВ играют решающую роль в теории принятия решений в условиях неопределенности последствий этих решений или в условиях противо-действия со стороны природы, или других больших систем (конкуренции). В этих условиях ключевой является стратегия управления, основанная на прогнозе т. н. апостериорной (послеопытной) вероятности события
P(X/Y) [pic][pic].
{2 - 10}
Прежде всего, еще раз отметим взаимную связь событий X и Y — если одно не зависит от другого, то данная формула обращается в тривиальное тождество. Кстати, это обстоятельство используется при решении задач оценки тесноты связей — корреляционном анализе. Если же взаимосвязь событий имеет место, то формула Байеса позволяет вести управление путем оценки вероятности достижения некоторой цели на основе наблюдений над процессом функционирования системы — путем перерасчета вариантов стратегий с учетом изменившихся представлений, т. е. новых значений вероятностей.
Рекомендуем скачать другие рефераты по теме: инвестиции реферат, форма реферата, конспект урока по русскому языку.
Категории:
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата