Теория организации и системный анализ
| Категория реферата: Рефераты по теории организации
| Теги реферата: сочинение капитанская, ответы 4 класс
| Добавил(а) на сайт: Милана.
Предыдущая страница реферата | 4 5 6 7 8 9 10 11 12 13 14 | Следующая страница реферата
Дело в том, что любая стратегия управления будет строиться на базе определенных представлений о вероятности событий в системе — и на первых шагах эти вероятности будут взяты "из головы" или в лучшем случае из опыта управления другими системами. Но по мере "жизни" системы нельзя упускать из виду возможность "коррекции" управления - использования всего накапливаемого опыта.
3 Схемы случайных событий и законы распределений случайных величин
Большую роль в теории и практике системного анализа играют некоторые стандартные распределения непрерывных и дискретных СВ.
Эти распределения иногда называют "теоретическими", поскольку для них разработаны методы расчета всех показателей распределения, зафиксированы связи между ними, построены алгоритмы расчета и т. п.
Таких, классических законов распределений достаточно много, хотя
"штат" их за последние 30..50 лет практически не пополнился. Необходимость
знакомства с этими распределениями для специалистов вашего профиля
объясняется тем, что все они соответствуют некоторым "теоретическим"
схемам случайных (большей частью — элементарных) событий.
Как уже отмечалось, наличие больших массивов взаимосвязанных событий и обилие случайных величин в системах экономики приводит к трудностям априорной оценки законов распределений этих событий или величин. Пусть, к примеру, мы каким-то образом установили математическое ожидание спроса некоторого товара. Но этого мало - надо хотя бы оценить степень колебания этого спроса, ответить на вопрос — а какова вероятность того, что он будет лежать в таких-то пределах? Вот если бы установить факт принадлежности данной случайной величины к такому классическому распределению как т. н. нормальное, то тогда задача оценки диапазона, доверия к нему (доверительных интервалов) была бы решена безо всяких проблем.
Доказано, например, что с вероятностью более 95% случайная величина
X с нормальным законом распределения лежит в диапазоне — математическое
ожидание Mx плюс/минус три среднеквадратичных отклонения SX.
Так вот — все дело в том к какой из схем случайных событий
классического образца ближе всего схема функционирования элементов
вашей большой системы. Простой пример - надо оценить показатели оплаты за
услуги предоставления времени на междугородние переговоры - например, найти вероятность того, что за 1 минуту осуществляется ровно N переговоров, если заранее известно среднее число поступающих в минуту заказов.
Оказывается, что схема таких случайных событий прекрасно укладывается в т.
н. распределение Пуассона для дискретных случайных величин. Этому
распределению подчинены почти все дискретные величины, связанные с так
называемыми "редкими" событиями.
Далеко не всегда математическая оболочка классического закона распределения достаточно проста. Напротив — чаще всего это сложный математический аппарат со своими, специфическими приемами. Но дело не в этом, тем более при "повальной" компьютеризации всех областей деятельности человека. Разумеется, нет необходимости знать в деталях свойства всех или хоть какой-то части классических распределений - достаточно иметь в виду саму возможность воспользоваться ими.
Из личного опыта - очень давно, в до_компьютерную эру автору этих строк удалось предложить метод оценки степени надежности энергоснабжения, найти по сути дела игровой метод принятия решения о необходимости затрат на резервирование линий электропередач в условиях неопределенности — игры с природой.
Таким образом, при системном подходе к решению той или иной задачи
управления (в том числе и экономического) надо очень взвешено отнестись
к выбору элементов системы или отдельных системных операций. Не всегда
"укрупнение показателей" обеспечит логическую стройность структуры системы
— надо понимать, что заметить близость схемы событий в данной системе к
схеме классической чаще всего удается на самом "элементарном" уровне
системного анализа.
Завершая вопрос о распределении случайных величин обратим внимание на еще одно важное обстоятельство: даже если нам достаточно одного единственного показателя — математического ожидания данной случайной величины, то и в этом случае возникает вопрос о надежности данных об этом показателя.
В самом деле, пусть нам дано т. н. выборочное распределение случайной
величины X (например — ежедневной выручки в $) в виде 100 наблюдений за
этой величиной. Пусть мы рассчитали среднее Mx и оно составило $125 при
колебаниях от $50 до $200. Попутно мы нашли SX, равное $5. Теперь уместен
вопрос: а насколько правдоподобным будет утверждение о том, что в
последующие дни выручка составит точно $125? Или будет лежать в
интервале $120..$130? Или окажется более некоторой суммы — например,
$90?
Вопросы такого типа чрезвычайно остры - если это всего лишь элемент некоторой экономической системы (один из многих), то выводы на финише системного анализа, их достоверность, конечно же, зависят от ответов на такие вопросы.
Что же говорит теория, отвечая на эти вопросы? С одной стороны очень много, но в некоторых случаях — почти ничего. Так, если у вас есть уверенность в том, что "теоретическое" распределение данной случайной величины относится к некоторому классическому (т. е. полностью описанному в теории) типу, то можно получить достаточно много полезного.
( С помощью теории можно найти доверительные интервалы для данной случайной величины. Если, например, уже доказано (точнее — принята гипотеза) о нормальном распределении, то зная среднеквадратичное отклонение можно с уверенностью в 5% считать, что окажется вне диапазона (Mx - 3[pic]Sx)......(Mx [pic] 3[pic]Sx) или в нашем примере выручка с вероятностью 0.05 будет $140. Надо смириться со своеобразностью теоретического вывода — утверждается не тот факт, что выручка составит от 90 до 140 (с вероятностью 95%), а только то, что сказано выше.
( Если у нас нет теоретических оснований принять какое либо классическое распределение в качестве подходящего для нашей СВ, то и здесь теория окажет нам услугу — позволит проверить гипотезу о таком распределении на основании имеющихся у нас данных. Правда - исчерпывающего ответа "Да" или "Нет" ждать нечего. Можно лишь получить вероятность ошибиться, отбросив верную гипотезу (ошибка 1 рода) или вероятность ошибиться приняв ложную (ошибка 2 рода).
( Даже такие "обтекаемые" теоретические выводы в сильной степени зависят от объема выборки (количества наблюдений), а также от "чистоты эксперимента" — условий его проведения.
4 Методы непараметрической статистики
Использование классических распределений случайных величин обычно называют "параметрической статистикой" - мы делаем предположение о том, что интересующая нас СВ (дискретная или непрерывная) имеет вероятности, вычисляемые по некоторым формулам или алгоритмам. Однако не всегда у нас имеются основания для этого. Причин тому чаще всего две:
( некоторые случайные величины просто не имеют количественного описания, обоснованных единиц измерения (уровень знаний, качество продукции и т. п.);
( наблюдения над величинами возможны, но их количество слишком мало для проверки предположения (гипотезы) о типе распределения.
В настоящее время в прикладной статистике все большей популярностью
пользуются методы т. н. непараметрической статистики — когда вопрос о
принадлежности распределения вероятностей данной величины к тому или
иному классу вообще не подымается, но конечно же — задача оценки самой
СВ, получения информации о ней, остается.
Одним из основных понятий непараметрической статистики является понятие
ШКАЛЫ или процедуры шкалирования значений СВ. По своему смыслу процедура
шкалирования суть решение вопроса о "единицах измерения" СВ. Принято
использовать четыре вида шкал.
Nom. Первой из них рассмотрим НОМИНАЛЬНУЮ шкалу — применяемую к тем
величинам, которые не имеют природной единицы измерения. Если некоторая
величина может принимать на своей номинальной шкале значения X, Y или Z, то
справедливыми считаются только выражения типа: (X#Y), (X#Z), (X=Z), а
выражения типа (X>Y), (X или | | | | | | |Сумма |
|Эксперты |1 |2 |3 |4 |5 |6 | |
| A | | | | | | | 21 |
| |5 |4 |1 |6 |3 |2 | |
| B | | | | | | |21 |
| |2 |3 |1 |5 |6 |4 | |
| C | | | | | | | 21 |
| |4 |1 |6 |3 |2 |5 | |
| D | | | | | | |21 |
| |4 |3 |2 |3 |2 |5 | |
| Сумма рангов| | 11| 10 |19 |12 | 17 |84 |
| |15 | |1 |6 |3 |5 | |
|Сум. ранг |4 |2 | | | | | |
| Отклонение | | | | | |+3 | 0 |
|суммы |+1 |-3 |-4 |+5 |-2 |9 |64 |
|от среднего |1 |9 |16 |25 |4 | | |
Рекомендуем скачать другие рефераты по теме: инвестиции реферат, форма реферата, конспект урока по русскому языку.
Категории:
Предыдущая страница реферата | 4 5 6 7 8 9 10 11 12 13 14 | Следующая страница реферата