Содержание.
ВВЕДЕНИЕ.
*
АЛГОРИТМ СХЕМОТЕХНИЧЕСКОЕ И ФУНКЦИОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ ВКА.
*
АНАЛИЗ ПРИВЕДЕННОГО АЛГОРИТМА.
*
СПМСОК К ЗАЩИТЕ.
*
Основные требования, предъявляемые к
*
ВКА.
*
ФУНКЦИОНАЛЬНО-СТРУКТУРНЫЙ АНАЛИЗ ВКА.
*
СТРУКТУРНО-КОНСТРУКТИВНАЯ КЛАССИФИКАЦИЯ ВКА.
*
Заключение.
АНАЛИТИЧЕСКИЙ ОБЗОР МЕТОДОВ ПОИСКОВОГО КОНСТРУИРОВАНИЯ.
*
ВАКУУМНАЯ КОММУТАЦИОННАЯ АППАРАТУРА (ВКА).
Развитие научно-технического прогресса, важнейшими направлениями которого являются создание и освоение принципиально новой техники и технологии, автоматизация и механизация производства привело к необходимости всесторонней интенсификации экономики. В частности, развития вакуумной техники, оказывающей определяющее влияние на создание и производство изделий электроники и все более широко используемой в других отраслях промышленности. Вследствие этого к вакуумному оборудованию предъявляются повышенные требования, разнообразный и меняющийся диапазон значений которых обуславливает необходимость модернизации и разработки новых конструкций его элементной базы, например, вакуумной коммутационной аппаратуры (ВКА): клапанов, затворов, натекателей, служащих для периодического сообщения и герметичного перекрытия вакуумных коммуникаций и управления вакуумным режимом. Неотъемлемой частью вакуумных систем (ВС) являются конструкция и правильная эксплуатация ВКА. Она и определяет надежность работы вакуумного технологического оборудования. (ВТО). Основанное на интуитивно-эмпирическом подходе, традиционное проектирование, исходя из уровня знаний конструктора, не удовлетворяет в полной мере ожесточившимся требованиям к созданию ВКА таким, как необходимость минимального воздействия потоков газовыделения и загрязнения на технологическую среду оборудования производства изделий электронной техники, работе при температурах 600 - 800 К, повышению показателей надежности в десятки раз и т.д., а это особенно заметно на примере цельнометаллической ВКА, показатели качества которой, начиная с начала 70-х годов по существу не улучшаются. По причине этого существующие конструкции громоздки, имеют небольшой ресурс и наработку на отказ. Осложнение происходит из-за отсутствия единого научно обоснованного подхода к проектированию ВКА, а это, в свою очередь, приводит к неоправданному ее многообразию, низкому качеству конструкций и, как следствие, к отказам и простоям дорогостоящего оборудования при эксплуатации. Также проявляется тенденция к значительному уменьшению сроков проектирования ВКА, которая наряду с указанными факторами вызывает необходимость автоматизации процесса проектирования. Вышесказанное определяет цель работы: создание научно обоснованной методологии схемотехнического и функционального проектирования ВКА, направленной на решение проблем проектирования ВКА, с конкретной реализацией в виде новых конструкций ВКА и программно-информационных средств, предназначенных для анализа, синтеза и моделирования работы ВКА. При этом необходимостью является разработка и применение новых развивающихся методик проектирования, позволяющих генерировать множество различных технических решений и проводить целенаправленный их поиск и выбор, исходя из технического задания (ТЗ), имеющего жесткие и иногда полярные требования.
АЛГОРИТМ СХЕМОТЕХНИЧЕСКОЕ И ФУНКЦИОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ ВКА.
Синтез и анализ ВКА на этапе технического предложения и с содержанием оценок свойств ВКА на основе исследования процессов ее функционирования, генерация и выбор принципиальных технических решений, определяющих структуру ВКА с учетом специфики ее функционирования в составе конкретной ВС, можно представить в виде последовательности. Цель проектирования - функция - устройство (элементная структура), которая обуславливает необходимость формального описания структур, функций, свойств, объектов для определения проектных целей в виде изменения структур ВКА и определения связей свойств ВКА для построения этих структур. Все это и является функциональным и схемотехническим проектированием ВКА
Требования к вакуумным системам определяют техническое задание (ТЗ) на разработку ВКА. Поиск аналогов является начальным этапом создания ВКА, что объясняется нецелесообразностью разработки новой конструкции ВКА при наличии среди существующих вариантов той конструкции, которая полностью удовлетворяет предъявленным требованиям. Если же вдруг аналоги отсутствуют, то необходимо проанализировать ТЗ для выявления заведомо завышенных требований с целью их смягчения. В противном случае переходят к поиску прототипа - конструкции ВКА, наиболее полно соответствующей требованиям ТЗ. Сравнение параметров выбранной конструкции ВКА с требуемыми позволяет сформировать потребительские цели проектирования ВКА в виде необходимости изменения соответствующих значений параметров ВКА или ее структурных составляющих. Исходя из целей, определяют необходимые функции и функциональные модули, их реализующие. Вводя соответствующие отношения среди найденных функциональных модулей, получают возможные структуры ВКА, из которых с помощью критериев выбирают структуру, наиболее отвечающую предъявленным требованиям ТЗ, что приводит к достижению проектной цели. Отсутствие среди известных удовлетворительной функциональной структуры или появление новых функций для достижения потребительской цели проектирования ВКА приводит к необходимости синтеза физического принципа действия ВКА - этапа ее функционального проектирования. Также появляются новые функциональные модули и происходит повтор этапов схемотехнического проектирования ВКА для синтеза ее оптимальной элементной структуры.
АНАЛИЗ ПРИВЕДЕННОГО АЛГОРИТМА.
Исходя из вышесказанного, можно отметить, что помимо отмеченного отсутствия системного описания ВКА, удобного для постановки задач схемотехнического и функционального проектирования, достижение поставленной цели осложнено также отсутствием исследований процесса функционирования ВКА с позиций схемотехнического проектирования. К этому можно также добавить: формальное описание структур ВКА и процесса их синтеза; формализованность научно обоснованных методов принятия решений при конструировании ВКА, что позволяет сформулировать следующие основные задачи, подлежащие решению:
1. Системные модели ВКА и процесса ее функционального и схемотехнического проектирования. 2. Методика и математические модели функционально-схемотехнического проектирования ВКА. 3. Математические модели ВКА на этапах функционального и схемотехнического проектирования. 4. Методика и математическая модель оценки конструкций ВКА и ее структурных составляющих. 5. Результаты исследования математической модели функционирования ВКА и критерии оптимальности конструкций ВКА. 6. Новый класс ВКА переменной структуры и конструкции ВКА.
А) Современное состояние работ по созданию вакуумной коммутационной аппаратуры.
Б) Анализ связей ВКА с оборудованием электронной техники.
Основные требования, предъявляемые к
Интервалы рабочих давлений по величине рабочего давления можно условно разделить на три группы:
Для первой группы получение вакуума в оборудовании достигается применением паромасляных диффузионных насосов с ловушками, позволяющими исключить наличие углеводородных соединений в рабочей среде; герметизация разъемных соединений осуществляется резиновыми прокладками. Эти установки относятся к не прогреваемым системам, длительность откачки которых определяется, в основном, десорбцией паров воды. Дополнительными требованиями к установкам данного типа могут служить необходимость получения определенного спектра остаточных газов, исключение привносимой дефектности на изделие электронной техники , высокая (до 1600 К) температура в рабочей камере и повышенные требования к надежности работы из-за значительного экономического ущерба в случае отказа . Во второй группе оборудования используют безмасляные и комбинированные средства откачки. В качестве уплотнений разъемных соединений применяются металлические прокладки и прокладки, изготовленные из термостойкой резины . Обычно установки второй группы прогреваются до 400 - 650 К, имеют достаточно большое время достижения рабочего давления (от 5 до 20 часов) и более жесткие требования к привносимой на изделие дефектности . К третьей группе оборудования принадлежат уникальные системы ускорители заряженных частиц, камеры для космических исследований и ряд технологических установок и научных приборов. Главное отличие от второй группы состоит в необходимости предварительной обработки и очистки материалов для вакуумных систем, длительном времени прогрева и откачки, использовании только металлических уплотнителей в разъемных соединениях. При этом время существования высокого вакуума в рабочем объеме может длиться месяцами и годами . Как рабочая среда технологических процессов и научных исследований вакуум находит возрастающее применение в различных отраслях промышленности. При этом основным потребителем элементов, средств и систем вакуумной техники является электронная техника, которая предъявляет, как мы видим, наиболее жесткие, зачастую противоречивые и трудно реализуемые требования к создаваемым ВС. Отметим, что для всех групп необходима автоматизация технологических процессов и научного эксперимента . В свою очередь, требования к вакуумному оборудованию формируют требования к его элементной базе, в том числе к ВКА, которая, являясь неотъемлемой частью ВС вакуумного оборудования (например, только в одно- и двухкамерных установках число коммутационных устройств колеблется от 5 до 10, достигая 15 ), во многом определяет его выходные характеристики. Так, производительность оборудования первой и второй групп определяется не только его конструкцией (однопозиционные установки периодического действия, установки полунепрерывного действия со шлюзовыми камерами, установки и линии непрерывного действия и др.), но и сокращением времени достижения рабочего давления, зависящим, в частности, от проводимости ВКА . В последнее время в производстве изделий электронной техники наметилась тенденция к понижению рабочего давления до 10 - 10 Па вследствие существенного влияния давления и парциального состава газовой смеси на параметры и свойства изделий, т.е. к использованию высоко- и сверхвысоковакуумного оборудования, требующего прогрева до 700 - 800 К и, следовательно, применения цельнометаллической ВКА, позволяющей сократить время достижения сверхвысокого вакуума в 2,5 раза и упростить обслуживание установок. С учетом отмеченного во введении критического состояния проектирования цельнометаллической ВКА целесообразно выделить для детального рассмотрения области ее применения. При этом, несмотря на достаточно четкую границу между группами оборудования с одинаковыми вакуумными характеристиками и условиями эксплуатации, определяющими основные свойства ВКА, к ней предъявляется множество разнообразных дополнительных требований, зависящих от конкретного случая использования, что ведет к увеличению номенклатуры ВКА, затрудняя проведение унификации и стандартизации вакуумного оборудования и повышая трудоемкость его проектирования и изготовления.
Обобщенный анализ по работам, позволяет судить о требуемом ресурсе и цикличности работы ВКА и показывает, что число циклов работы клапанов и затворов лежит в пределах 500 - 8000, а в ряде установок, имеющих длительность технологического процесса порядка десятков секунд (например, электронно-лучевых установок микросварки), их ресурс должен быть значительно большим - 20000 - 50000. Кроме того, особенностью ВКА является кратковременный циклический режим работы с большими промежутками между включениями: отношение времени работы к времени выстоя очень различно и в среднем находится в пределах 1 : (100 - 10000). Суммарное время нахождения механизмов ВКА в динамическом состоянии до замены уплотнительной пары составляет для ВКА с металлическим уплотнителем в среднем примерно 2 - 4 часа, для ВКА с резиновым уплотнением - 20 - 50 часов. Снижение рабочего вакуума накладывает дополнительные ограничения на разработку ВКА, связанные с необходимостью уменьшения влияния элементов вакуумной полости ВКА на параметры технологического процесса и учета привносимой дефектности. При этом ряд ответственных сверхвысоковакуумных систем, взамен большого ресурса работы ВКА выдвигает на первый план требования к быстродействию и высокой надежности ее работы. Таким образом, анализ назначения ВКА в свете задач, решаемых современным вакуумным оборудованием, позволил сформировать следующие основные требования, предъявляемые к ВКА. ВКА должна: иметь заданную проводимость в открытом положении; обеспечивать требуемое быстродействие; гарантировать величину натекания в закрытом положении ВКА не выше допустимой (например, соизмеримой с уровнем газопроницаемости конструкционных материалов и материала уплотнителя); допускать эксплуатацию в диапазоне температур от 77 до 800 К; минимально воздействовать на качественный и количественный состав остаточной среды в вакуумной системе; иметь достаточные ресурс работы и наработку на отказ; предусматривать возможность автоматического управления и контроля за работой; обладать минимальными габаритами и весом; обеспечивать простой монтаж и демонтаж устройства; иметь высокие технолого-экономические показатели.
Функционально-структурный анализ ВКА.
Несмотря на все возрастающую потребность в ВКА, имеющаяся по ней литература весьма скудна, разрознена и носит большей частью описательный характер. В затрагивающих данную область работах практически отсутствуют методики проектирования ВКА, недостаточны рекомендации и данные по ее расчету и конструированию [20, 29, 5154], вследствие чего разработка конкретных устройств ВКА в большинстве случаев основывается на опыте конструктора. При этом отсутствие единого научно обоснованного подхода к проектированию ВКА затрудняет создание конструкции, имеющей наилучшие характеристики по всем показателям качества, поэтому существующие вакуумные клапаны и затворы удовлетворительно соответствуют лишь 3 - 4 показателям качества, что приводит к неоправданному многообразию их конструкций. Достоинства и недостатки существующих конструкций ВКА рассмотрим на основе анализа информации, содержащейся в литературных источниках и каталогах отечественных предприятий-разработчиков и заводов-изготовителей и передовых в области вакуумного машиностроения иностранных фирм [20, 29, 51 - 67]. Проанализируем существующие технические решения ВКА с позиций функционально-структурного подхода - реализации последовательности: цель - функция - устройство. Плоский затвор (рис. 1.5 а, е), имеющий минимальное расстояние между присоединительными фланцами (цель), во избежание износа уплотнителя требует при перемещении улотнительного органа 1 для открывания или перекрывания проходного отверстия 2 создания гарантированного зазора между ним и корпусом 3, что приводит к необходимости осуществления в клапане двух не совпадающих по направлениям движений: перемещения уплотнительного органа 1 для открывания и перекрывания проходного отверстия 2 и герметизации уплотнительной пары (функция), а, следовательно, либо к появлению механизма 4 в вакуумной полости (рис. 1.5, а), либо к использованию двух исполнительных органов и соответственно двух вводов движения в вакуум 5,5 (рис. 1.5, е) (устройство). Оба решения существенно снижают надежность и ресурс работы устройства, а второе приводит и к усложнению управления затвором. Отличительной особенностью схемы поворотного затвора, приведенной на рис. 1.5, б, является возможность совмещения в корпусе 3 проходного и углового взаиморасположения перекрываемых отверстий 2 (цель), а также совпадение направлений перемещения уплотнительного органа и усилия герметизации при уплотнении (функция). Однако поворотный затвор с непосредственным воздействием ведущего звена 6 на уплотнительный орган 1 (устройство) не получил широкого распространения вследствие необходимости создания значительных крутящих моментов при герметизации запорной пары. Другие типы конструкций ВКА также обладают рядом недостатков. Работа крана (рис. 1.5, в) связана со скольжением уплотнительных поверхностей элементов 1 и 3 друг относительно друга, и, как следствие, подобные устройства имеют повышенное натекание и малый ресурс работы. К недостаткам конструкций, представленных на рис. 1.5 г, д, можно отнести использование механизма непосредственного действия [51], приводящего к повышенным массо-габаритным характеристикам автоматического привода. Для приближенной обобщенной оценки качества конструкций ВКА, исходя из ее основного назначения, сформулированного во введении, предлагается использовать условный показатель, определяемый отношением проводимости ВКА к диаметру перекрываемого отверстия, изменение значения которого для некоторых серийно выпускаемых типов устройств приведено на рис. 1.7. Большее значение данного показателя определяет лучшую конструкцию. Подобный показатель позволяет провести сравнение конструкций как в рамках одного типа устройств, так и сравнение устройств различных типов, а также оценить конструкции с нестандартными значениями диаметров перекрываемых отверстий. В частности можно отметить большую эффективность, по сравнению с угловыми конструкциями, конструкций с соосным расположением проходных отверстий (см. рис. 1.3 - 1.5), а среди последних - лучшие показатели плоских устройств (рис. 1.5, а). Обращает на себя внимание и трудность оптимизации конструктивных решений ВКА с малыми диаметрами условных проходов (Ду). Изложенное позволяет сделать вывод о влиянии цели проектирования ВКА на ее рабочие функции и, как следствие, на структуру устройства. При этом можно выделить следующие основные структурные составляющие ВКА: привод, уплотнительная пара, корпус, ввод движения в вакуум и механизмы. С позиций решаемых задач целесообразно рассмотреть влияние указанных структурных элементов на показатели качества ВКА. Существенно влияет на показатели качества ВКА используемый тип уплотнительной пары [51, 67]. В настоящее время в различных отраслях промышленности широко применяется ВКА с резиновым уплотнением (рис. 1.6, д, е). Однако, имея в десятки раз больший ресурс работы (20000 - 100000 циклов) и в 10 - 20 раз меньшие усилия герметизации [55] по сравнению с цельнометаллическими конструкциями, такая ВКА обладает рядом недостатков, ограничивающих область ее использования и заключающихся в невысоких температурных пределах прогрева, в значительной величине скорости газовыделения, относительно высокой газопроницаемости и влиянии на масс-спектрометрический состав вакуумной среды [7]. Лучшие марки вакуумных резин, применяемые в клапанах и затворах допускают прогрев только до 470 К, при этом величина скорости газовыделения лежит в пределах 3.10 - 7.10 л Па/см с, а величина газопроницаемости по азоту для этих марок при 1.10 Па и 300 К составляет 2.10 - 4.10 см см/см с [68, 69]. Широкое использование ВКА с эластомерными уплотнителями во многом вызвано отсутствием альтернативы, т.к. основные технические характеристики выпускаемых отечественной промышленностью устройств с металлическими уплотнителями (рис. 1.6, а - г) заметно уступают лучшим зарубежным образцам, особенно это касается прямопролетных конструкций [59], что наряду с отмеченными в п. 1.1 факторами определяет актуальность создания цельнометаллических устройств. Разработка цельнометаллической ВКА требует пересмотра подхода к проектированию ВКА в связи с большими удельными усилиями герметизации (до 200 н/мм, [67, 70]), и необходимостью учета дополнительных факторов, не рассматриваемых при проектировании конструкций с резиновым уплотнением (например, обеспечения высокоточного взаиморасположения деталей уплотнительной пары в момент герметизации, влияния частиц износа на работоспособность уплотнителя и др. [34, 51, 67]. Перечисленные факторы определяют технологические трудности реализации конструкторских решений и высокую стоимость цельнометаллической ВКА. В значительной степени влияет на основные характеристики функционирования коммутационных устройств ее привод [71]. Преобладающие типы приводов, используемых в ВКА, отражены на рис. 1.3, 1.4. Кратко можно отметить, что использование ручного привода исключает возможность автоматизации управления ВКА; электропневматический привод требует наличия энергоносителя и дополнительных устройств управления; электромеханический привод громоздок и инерционен; использование электромагнитного привода требует специальных источников питания и сопровождается сильными динамическими ударами, снижающими ресурс работы уплотнителя и создающими помехи в работе оборудования. Свои особенности, связанные с надежностью, площадью поверхности, обращенной в вакуум, видом и характеристиками передаваемого движения и т.п., имеют и вводы движения в вакуум [53, 55, 72, 73], передавая свои достоинства и недостатки ВКА. В большой степени разнообразие ВКА и ее выходные характеристики обусловлены применением в конструкциях различных механизмов, выполняющих следующие функции: преобразование вида движения ведущего звена и вида перемещения уплотнительного органа; изменение направления движения исполнительного органа; осуществление передаточных функций [74]. В ВКА различают механизмы исполнительных органов и механизмы уплотнительных органов [51]. Исполнительный орган состоит из ведущего звена и механизма перемещения. На рис. 1.8 показаны некоторые кинематические схемы исполнительных органов, которые могут располагаться как в вакуумной полости устройства, так и вне ее [54]. Механизмы исполнительного органа ВКА бывают непосредственного действия (рис. 1.8, а, б [51]); винтовые (рис. 1.8, в [53]), кулачковые (рис. 1.8 г [54]); кулисные (рис. 1.8, д, з [58]), рычажные (рис. 1.8, е [61]), кривошипно-ползунные (рис. 1.8 ж, з [56]) и комбинированные (например, рычажноползунные, рис. 1.8, и - м [63]). Основными функциями уплотнительного органа, состоящего из механизма герметизации и уплотнительного диска, является преобразование направления и вида движения выходного звена механизма перемещения и уменьшение усилий или крутящих моментов на ведущем звене устройства. Особенностью уплотнительных механизмов является их расположение в большинстве случаев в вакуумной полости. На рис. 1.9 представлены некоторые кинематические схемы уплотнительных органов. К ним относятся кулачковые (рис. 1.9, б, ж [54]), ползунные (рис. 1.9, в [51]); клиновые (рис. 1.9, г [75]), винтовые (рис. 1.9, д [56]) механизмы. Анализ проведенных работ выявил отсутствие исследований свойств механизмов ВКА с учетом специфики их функционирования, что объясняет многообразие встречающихся механизмов, но затрудняет обоснованный выбор структурных схем при создании новых конструкций ВКА. При этом наиболее жесткие требования к механизмам ВКА предъявляет сверхвысоковакуумное оборудование [51, 74], т.к. необходимость сохранения определенного состава остаточной газовой среды, высокие температуры прогрева, повышенный износ и коэффициент трения в вакууме требуют минимума сопряженных пар трения и малых контактных усилий, в то же время исключая возможность применения смазки [50]. Частично устраняют конструктивные трудности, связанные с необходимостью обеспечения значительных усилий устройства, использующие для герметизации: тепловое расширение материалов [67] и перевод металлического уплотнителя в жидкую фазу [76], однако подобные устройства обладают очень большой инерционностью. Особенности кинематики и динамики механизмов ВКА наглядно характеризует упрощенная зависимость движущих моментов (или сил ) от угла поворота (или перемещения ) уплотнительного диска, представленная на рис. 1.10 и показывающая, что ВКА имеет две четко выраженные стадии работы с несоизмеримыми по величине усилиями и перемещениями: I - стадия открывания или перекрывания проходного отверстия, где необходимо создание малых усилий на значительном перемещении уплотнительного диска, определяемом величиной диаметра проходного отверстия (для устройств плоского типа) или высотой подъема уплотнительного диска (для прочих устройств); II - стадия герметизации проходного отверстия, в которой развиваются значительные усилия на небольших перемещениях, определяемых, в основном, величиной деформации элементов уплотнительной пары. При этом, в зависимости от Ду ВКА: = (15 - 200)/1, где - перемещение (угол поворота) уплотнительного диска при открывании или закрывании проходного отверстия; ( ) - перемещение (угол поворота) уплотнительного диска при герметизации проходного отверстия; = (1000 - 2000)/1 - для ВКА с металлическими уплотнителями; = (80 - 250)/1 - для ВКА с эластомерными уплотнителями, где - усилие герметизации уплотнительной пары, - усилие перемещения уплотнительного диска при перекрывании проходного отверстия. Следует отметить, что существующие описания конструкций ВКА (в основном параметрические) ориентированы на конкретные типы устройств и их крайне трудно или невозможно применить для разработки ВКА других типов. Усугубляет ситуацию конструирования ВКА противоречивость отдельных требований. Так установленная существенная зависимость ресурса уплотнительной пары от скорости приложения к ней усилия и перегрузок [70] и связанная с этим необходимость уменьшения движущих моментов на ведущем звене устройства и скорости перемещения уплотнительного диска, противоречит требованию высокого быстродействия. Из вышеизложенного можно сделать вывод, что ни одна из существующих конструкций ВКА не удовлетворяет полному набору современных требований, обладая теми или иными недостатками.
Проведенный анализ литературных источников достаточно полно характеризует ситуацию, сложившуюся в области проектирования ВКА: отсутствует обоснованный анализ применяемых кинематических схем ВКА, а также рекомендации и данные по их расчету и конструированию, поэтому использование той или иной схемы носит эмпирический характер. Отсутствует единый подход к определению классификационных признаков ВКА и, как результат, не разработана ее детальная классификация. Существуют различия и в трактовании терминов. Например, в [58] клапаны - устройства с Ду до 100 мм, а затворы устройства с Ду свыше 100 мм; в [54] клапан - устройство, позволяющее регулировать или полностью прекращать поток газа в вакуумной системе, затвор - клапан, позволяющий соединять и разобщать элементы ВС. При этом оба варианта определения содержат противоречия, т.к. в первом случае одинаковые конструкции различных типоразмеров должны относиться к разным группам устройств, а во втором случае деление чисто условно, вследствие адекватности реально выполняемых клапанами и затворами функций. Все это приводит к многовариантности ВКА (например, только в одной организации за 13 лет было разработано более 100 наименований ВКА на 41 Ду [77]), затрудняет унификацию ВКА и требует разработки дополнительных критериев и ограничений применительно к конкретным ее типам. Вместе с тем, представляется логичным проводить классификацию ВКА в соответствии с модульным принципом, положенным в основу функционально-структурного анализа существующих конструкций ВКА, с сохранением предварительного деления по эксплуатационным признакам (назначению: устройства напуска, аварийные и т.п.; рабочему давлению: низковакуумные, высоковакуумные, сверхвысоковакуумные и т.д.). С позиций решения задач функционального и схемотехнического проектирования ВКА, используя результаты проведенного на основе блочно-иерархического подхода с учетом монтажных и функциональных особенностей ВКА анализа ее существующих конструкций, выделим два иерархических уровня представления ВКА: устройство в целом и функциональные модули (ФМ), его составляющие. При этом каждый ФМ ВКА решает определенную задачу, хотя монтажно они могут быть неразделимы и иметь общие элементы, через которые осуществляется передача, например, усилий или момента от одного ФМ к другому. В конструкциях ВКА можно выделить шесть различных ФМ, причем четыре из них присутствуют у всех рассмотренных устройств, т.е. являются основными, обеспечивающими выполнение базовых функций ВКА, и неосновные, способствующие выполнению функций основных ФМ. К основным ФМ ВКА относятся: привод, генерирующий энергию для перемещения уплотнительного диска и герметизации уплотнительной пары; ввод движения, предназначенный для передачи движения из атмосферы в вакуумную среду без нарушения ее свойств; уплотнительная пара, реализующая основную функцию ВКА - перекрывание и герметизацию проходного отверстия; корпус, обеспечивающий требуемое взаиморасположение ФМ ВКА и присоединение самой ВКА в ВС. Особенностью подобного структурного членения является выделение в виде самостоятельного ФМ уплотнительной пары (включающей уплотнительный диск - ведомое звено уплотнительного органа, и седло - элемент корпуса), позволяющее более детально представить процесс герметизации. Следует отметить существование определенной последовательности основных ФМ в конструкциях ВКА, что позволяет представить обобщенную структуру ВКА в виде блок-схемы. К не основным ФМ ВКА можно отнести механизмы - ФМ, расположенные между основными ФМ и согласующие их входные и выходные характеристики (параметры движения). Особую сложность вызвало проведение систематизации многообразия возможных схем механизмов ВКА с целью их упорядочения. Подробно решение данной задачи рассмотрено автором в [80], где предложена классификация ВКА, проведенная по структурно-конструктивным признакам: расположению и сочетанию механизмов относительно вакуумной полости и по типу механизмов. Предлагаемая обобщенная классификация ВКА приведена на рис. 1.12 и включает ее разбиение по признакам используемых механизмов. Подобная классификация дополняет известные и позволяет быстро находить возможные варианты механизмов при их конструировании, оценить их, установить наиболее оптимальные структуры механизмов ВКА, выявить необходимые типы автоматических приводов и вакуумных вводов движения.
Аналитический обзор методов поискового конструирования.
При разработке с ВКА возникает необходимость учета труднообозримого множества различных факторов, возможность использования формальных представлений там, где заканчивается интуитивное мышление, проведение детального анализа как можно большего числа аналогов и прототипов, стремление к повышению эффективности разработок и росту производительности труда конструктора требуют перехода к автоматизированному проектированию ВКА. Отмеченная нами стабильность структуры существующих конструкций ВКА позволяет считать применимыми для процесса схемотехнического проектирования ВКА методы поискового конструирования. Для детального анализа математических методов поискового конструирования и методов выбора технических объектов с позиций автоматизации процесса проектирования рассмотрим основные методы, используемые при автоматизации начальных этапов проектирования, известные в отечественной и зарубежной практике, применительно к конкретному классу технических объектов - ВКА. Анализ известных методов формирования ТР показал, что наиболее эффективными, а потому широко используемыми на практике, являются: "теория решения изобретательских задач" (ТРИЗ), метод эвристических приемов, обобщенный эвристический метод, метод гирлянд ассоциаций и метафор, морфологические методы анализа и синтеза такие, как метод "матриц открытия", метод десятичных матриц поиска и другие, направленные на исследование самого объекта проектирования, а не психологических особенностей человека. Кроме того, указанные методы могут быть в значительной мере формализованы, что немаловажно с позиций поставленных задач. Разработки более эффективных методов, чем известные 30, интенсивно продолжаются, при этом прослеживаются три основных направления разработок : - создание принципиально новых методов;
Методика решения конструкторско-изобретательских задач получила название "теория решения изобретательских задач" (ТРИЗ). Она представляет собой систематизированный набор преимущественно эвристических правил, выполнение которых облегчает решение конструкторской задачи. Суть метода эвристических приемов при проектировании новой конструкции, используемого в алгоритмах, можно представить, как преобразование известных прототипов с помощью определенного набора эвристических приемов, и получение множества новых конструктивных решений, отвечающих заданным условиям, среди которых ведется затем поиск оптимального варианта. Библиотека для этих приемов преобразования прототипов для несложных механических систем содержит 16 приемов, которые подразделены на 16 групп. Из 86 составленных эвристических приемов для 65 имеются рекомендации по их формальному описанию, открывающие возможность их программирования на ЭВМ, остальные пока не удалось формально описать. Суть метода гирлянд ассоциаций и метафор, являющегося одним из эвристических методов поискового конструирования, заключается в определении гирлянд синонимов и гирлянд случайных объектов с последующим составлением комбинаций из этих случайных гирлянд. Конечным результатом является выбор рационального варианта технического объекта и отбор наилучшего из рациональных, как правило, методом экспертных оценок. На основе взаимосвязи показателей технических объектов и эвристических приемов разработан метод десятичных матриц поиска (ДМП). Все основные показатели технических объектов разделены на 10 групп, что дало возможность построить особую десятичную систему матричных таблиц, в строках которых записаны меняющиеся характеристики технического объекта, а в столбцах - группы эвристических приемов их изменения. Каждая клетка на пересечении ряда и столбца соответствует определенному ТР, краткое описание которого может сопровождаться графическим описанием. В зависимости от содержащейся информации ДМП могут носить общетехнический, отраслевой или предметный характер. При построении ДМП должна использоваться патентно-техническая литература. Значение взаимосвязей показателей технических объектов и групп эвристических приемов, а также конкретных требований решаемой задачи предопределяет целенаправленный выбор пути ее решения. Более простую модель предложил Ф. Цвикки. Ситуация выбора в ней оказывается конструктором при создании новых ТР - морфологический ящик. Свободу выбора при конструировании Ф. Цвикки трактует, как возможность работать с альтернативами, т.е. выбирать одни варианты выполнения блоков и отвергать другие. Выделяя в каждом столбце таблицы альтернативу и соединяя их отрезками линий, получают многозвенную линию, которая символизирует описание признаков некоторой конструкции. Выбор предпочтительной конструкции инженер делает интуитивно, по очереди перебирая комбинации альтернатив. Технический объект исследуют, выделяя ряд характерных признаков. Затем для признаков находят различные варианты исполнения, реализующие эти признаки. Столбцы в таблице соответствуют необходимым признакам, а отдельная позиция в столбце - варианту его функциональной реализации. Другая форма - комбинирование признаков, характеризующих различные системы (организующие понятия). При комбинировании двух организующих понятий, рекомендуется табличная форма, в столбцах которой записаны признаки одного организующего понятия, а в строках признаки другого организующего понятия. В каждой клетке таблицы находится рабочий принцип из комбинации двух элементов решения. При комбинировании более чем двух организующих понятий пользуются матричной формой записи. В общем, метод морфологического анализа и синтеза состоит в изучении всех возможных комбинаций параметров, форм, отдельных элементов для решения поставленной задачи. Значения параметров, типы форм и элементов образуют таблицу (матрицу). Различные сочетания перечисленных характеристик рождают альтернативные идеи или рекомендуемые решения задачи. Морфологический анализ применяется для решения задач поиска рациональных структур, схем и компоновок. При возможности синтеза большого множества новых ТР в этом методе практически не решена проблема выбора наилучшего решения из числа синтезируемых. Таким образом, анализ методов поискового конструирования показывает, что большинство из них представляет собой комбинацию из нескольких известных методов или же являются производными какоголибо метода, но более эффективными. Наиболее простым и формализуемым методом, позволяющим генерировать большое множество вариантов ТР, является метод морфологического анализа и синтеза, но в нем не формализована процедура выбора наилучшего решения. Представляется целесообразным развитие этого метода для структурного синтеза ВКА путем добавления процедур структурной оптимизации. Изучение вопросов, связанных с автоматизацией проектно-конструкторской деятельности и, в частости, созданием САПР, показало подробную проработку методических основ создания САПР, типовых структур подсистем САПР, правил построения и организации различных видов обеспечений САПР (математического, программного, информационного) и других теоретических аспектов автоматизированного проектирования. Большое внимание уделено и аппаратным средствам САПР. Однако проблемы создания конкретных прикладных САПР достаточно полно решены лишь в областях электротехники и радиоэлектроники. В разработке же САПР машиностроительных объектов, к которым относится и ВКА, основной упор делается на автоматизацию отдельных процедур, автоматизированное проектирование отдельных элементов, автоматизацию технологической подготовки производства и изготовление конструкторской документации. При этом отмечается сложность выработки единого универсального принципа конструирования технических объектов машиностроения, основанного во многом на трудно формализуемом творческом подходе и неизбежность, в связи с этим, модификации типовых структур их САПР. В последнее время на основе идеи Цвикки предложена комбинаторная концепция работы с альтернативами, на основе которой разработаны новые системно-морфологические алгоритмы оптимизации и общая логическая схема принятия решений при конструировании. В работе вводится понятие комбинаты, являющейся сопряженной к понятию альтернативы, отражающей все локальные, исключающие друг друга варианты взаимной подмены блоков при конструировании. Не всякая комбинация при замене одного функционального блока другим (из одной и той же альтернативной серии, описывающей данный признак ) правомерна. Фиксацию этого факта отражает комбината, т.е. совокупность всех мыслимых альтернатив формально порождает множество комбинаций, а отношение комбинаторности ограничивает это множество и показывает, что на самом деле невозможно, а что необходимо еще исследовать. Иерархическая списковая структура, в которой учтены все альтернативы и комбинаты признаков строения, составляет комбинаторный файл семейства технических систем, который представляет не что иное, как многоуровневую композицию вложенных друг в друга морфологических ящиков. Поделитесь этой записью или добавьте в закладки | Полезные публикации |