Билеты по математическому анализу
| Категория реферата: Рефераты по математике
| Теги реферата: дипломная работа по менеджменту, курсовая работа 2011
| Добавил(а) на сайт: Нимфа.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13
Пусть D у¹ 0 – приращение независимой переменной у и D х – соответствующее приращение обратной ф-ции x=j (y). Напишем тождество: D x/D y=1:D y/D x (2) Переходя к пределу в рав-ве (2) при D у® 0 и учитывая, что при этом также D х® 0, получим: lim(D y® 0)D x/D y=1:lim(D x® 0)D y/D x => x‘y=1/y‘x. Где х‘у – пр-ная обратной ф-ции.
Теорема Больцано-ВейерштрассаТеорема Больцано-Коши. Теорема ВейерштрассаТеорема Больцано-Вейерштрасса Из любой огран. посл-ти можно выбрать сход. подпосл-ть.
Док-во
1. Поскольку посл-ть ограничена, то $ m и M, такое что " m£ xn£ M, " n.
D 1=[m,M] – отрезок, в котором лежат все т-ки посл-ти. Разделим его пополам. По крайней мере в одной из половинок будет нах-ся бесконечное число т-к посл-ти.
D 2 – та половина, где лежит бесконечное число т-к посл-ти. Делим его пополам. По краней мере в одной из половинок отр. D 2 нах-ся бесконечное число т-к посл-ти. Эта половина - D 3. Делим отрезок D 3 … и т.д. получаем посл-ть вложенных отрезков, длинны которых стремятся к 0. Согластно о т-ме о вложенных отрезках, $ единств. т-ка С, кот. принадл. всем отрезкам D 1, какую-либо т-ку D n1. В отрезке D 2 выбираю т-ку xn2, так чтобы n2>n1. В отрезке D 3 … и т.д. В итоге пол-ем посл-ть xnkÎ D k.
Теорема Больцано-Коши Пусть ф-ция непр-на на отрезке [a,b] и на концах отрезка принимает зн-ния равных знаков, тогда $ т-ка с Ì (a,b) в которой ф-ция обращается в 0.
Док-во
Пусть Х – мн-во таких т-к х из отрезка [a,b], где f(x)<0. Мн-во Х не пустое. ХÎ [a,b], значит х ограничено, поэтому оно имеет точную верхнюю грань. c=supx. a£ c£ b покажем a<c<b по т-ме об уст. знака, поэтому c¹ a, c¹ b. Предположим f(c)=0, что это не так, тогда $ окрестность т-ки с в пределах которой ф-ция сохраняет знак, но это не можетбыть, т.к. по разные стороны т-ки с ф-ция имеет разный знак. f(с)=0.
Теорема Вейерштрасса Непрерывная ф-ция на отрезке ограничена.
Док-во Предположим что ф-ция не ограничена. Возьмем целое пол-ное n, т.к. ф-ция не ограничена, то найдется xnÎ [a,b], такое что ½ f(xn)½ >n. Имеем посл-ть т-к xn. По т-ме Больцано-Коши из посл-ти xn можно выбрать сходящиюся подпосл-ть xnk$ ® x0. По т-ме о предельном переходе к неравенству.
a£ xnk£ b a£ x0£ b x0Î [a,b]
Если посл-ть xnk сходится к x0, то f(xnk) будет сходится f(x0)
½ f(xnk)½ >nk, a nk® ¥ Þ ½ f(xnk)½ ® ¥ , т.е. f(xnk) б/б посл-ть.
С одной стороны f(xnk) стремится к опр. числу, а с др. стороны стремится к ¥ , пришли к противоречию, т.к. мы предположим, что ф-ция не ограничена. Значит наше предположение не верно.
Скачали данный реферат: Pchel'nikov, Markov, Pushkin, Едемский, Реутов, Pirogov.
Последние просмотренные рефераты на тему: організація реферат, чехов рассказы, понятие культуры, рассказы.
Категории:
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13