Дифференциальные уравнения I и II порядка
| Категория реферата: Рефераты по математике
| Теги реферата: скачать бесплатный реферат без регистрации, реферат на тему русские
| Добавил(а) на сайт: Rafail.
Предыдущая страница реферата | 11 12 13 14 15 16 17 18 19 20 21 | Следующая страница реферата
Называемое характеристическим. Его корни, как известно, определяются формулами
.
Возможны следующие три случая для вида корней этого уравнения:
1) корни уравнения – действительные и различные;
2) корни – действительные и равные;
3) корни уравнения – комплексно-сопряженные.
Для каждого из этих случаев однородное дифференциальное уравнение имеет свой вид общего интеграла.
Случай 1. Дискриминант характеристического уравнения положителен, т.е. p2-4q>0. Тогда оба корня действительные и различные. В этом случае общее решение однородного уравнения имеет вид
,
где c1, c2 – произвольные постоянные.
Действительно, если , то , .
Подставляя выражения для y,y/ и y// в уравнение получим
.
Случай 2. Дискриминант характеристического квадратного уравнения равен нулю, т.е p2-4q=0.
Тогда оба корня действительные и равные, т.е. .
В этом случае общее решение однородного уравнения имеет вид
.
Случай 3. Дискриминант характеристического квадратного уравнения отрицателен, т.е. p2-4q<0.
Тогда говорят, что квадратное уравнение не имеет действительных корней (или что оба корня являются комплексно-сопряженными). В этом случае, обозначая
,
общее решение однородного уравнения дается в виде
.
Рассмотрим теперь решение неоднородного уравнения
y//+py/+g(y)h(x),
Рекомендуем скачать другие рефераты по теме: собственность реферат, шпаргалки бесплатно скачать.
Категории:
Предыдущая страница реферата | 11 12 13 14 15 16 17 18 19 20 21 | Следующая страница реферата