Дифференциальные уравнения I и II порядка
| Категория реферата: Рефераты по математике
| Теги реферата: скачать бесплатный реферат без регистрации, реферат на тему русские
| Добавил(а) на сайт: Rafail.
Предыдущая страница реферата | 6 7 8 9 10 11 12 13 14 15 16 | Следующая страница реферата
,
являясь линейным однородным дифференциальным уравнением (в нем вместо y взята для удобства переменная z, чтобы не возникло путаницы решений этого уравнения с исходным).
Общее решение этого уравнения, как уже отмечалось ранее, может быть представлено в виде
,
где A – произвольная постоянная. Очевидно, является его частным решением, и, следовательно, может быть получено при некотором значении , т.е.
.
Если теперь освободиться от условия фиксирования постоянной , то получаем, что общее решение исходного уравнения имеет вид
.
В нем второй множитель функция является, как нетрудно видеть, частным решением при c=1 однородного линейного уравнения . Первый множитель функция представляет общее решение дифференциального уравнения u/v(x)=h(x).
Действительно, подставляя в это уравнение u/x(x,c), получаем тождество
.
Таким образом, показано, что общее решение линейного дифференциального уравнения
Представляется в виде y=u(x,c)v(x), где v(x) – частное решение однородного уравнения , решаемое при c=1, u(x,c) – общее решение уравнения u/v(x)=h(x).
Нетрудно видеть, что в обоих случаях приходится решать уравнение с разделяющимися переменными.
Заметим, что хотя при решении однородного уравнения бралось частное решение V(x) однородного уравнения v/+g(x)v=0,
Являющегося уравнением с разделяющимися переменными.
На втором этапе определяется решение u(x,c) дифференциального уравнения u/v(x)=h(x),
Также являющегося уравнением с разделяющимися переменными. После их решений общее решение исходного линейного уравнения представляется в виде
Y=u(x,c)v(x).
Пример 1. Решить уравнение
Y/+2y=sinx.
Сначала решаем однородное уравнение v/+2v=0.
Из него получаем
или .
Рекомендуем скачать другие рефераты по теме: собственность реферат, шпаргалки бесплатно скачать.
Категории:
Предыдущая страница реферата | 6 7 8 9 10 11 12 13 14 15 16 | Следующая страница реферата