Дисперсионный анализ
| Категория реферата: Рефераты по математике
| Теги реферата: страхование реферат, диплом государственного образца
| Добавил(а) на сайт: Чупахин.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
Q3 = Q – Q1 – Q2 – Q4.
Отклонение от основных предпосылок дисперсионного анализа — нормальности распределения исследуемой переменной и равенства дисперсий в ячейках (если оно не чрезмерное) — не сказывается существенно на результатах дисперсионного анализа при равном числе наблюдений в ячейках, но может быть очень чувствительно при неравном их числе. Кроме того, при неравном числе наблюдений в ячейках резко возрастает сложность аппарата дисперсионного анализа. Поэтому рекомендуется планировать схему с равным числом наблюдений в ячейках, а если встречаются недостающие данные, то возмещать их средними значениями других наблюдений в ячейках. При этом, однако, искусственно введенные недостающие данные не следует учитывать при подсчете числа степеней свободы /1/.
2 Применение дисперсионного анализа в различных процессах и исследованиях
2.1 Использование дисперсионного анализа при изучении миграционных процессов
Миграция - сложное социальное явление, во многом определяющее экономическую и политическую стороны жизни общества. Исследование миграционных процессов связано с выявлением факторов заинтересованности, удовлетворенности условиями труда, и оценкой влияния полученных факторов на межгрупповое движение населения.
λij=ciqijaj,
где λij – интенсивность переходов из исходной группы i (выхода) в новую j (входа);
ci – возможность и способности покинуть группу i (ci≥0);
qij – привлекательность новой группы по сравнению с исходной (0≤qij≤1);
aj – доступность группы j (aj≥0).
Если считать численность группы i равной ni, то оценкой случайной величины νij - числа переходов из i в j – будет niciqijaj:
νij≈ niλij=niciqijaj. (16)
На практике для отдельного человека вероятность p перехода в другую группу мала, а численность рассматриваемой группы n велика. В этом случае действует закон редких событий, то есть пределом νij является распределение Пуассона с параметром μ=np:
.
С ростом μ распределение приближается к нормальному. Преобразованную же величину √νij можно считать нормально распределенной.
Если прологарифмировать выражение (16) и сделать необходимые замены переменных, то можно получить модель дисперсионного анализа:
ln√νij=½lnνij=½(lnni+lnci+lnqij+lnaj)+εij,
Xi,j=2ln√νij-lnni-lnqij,
Ci=lnci,
Aj=lnaj,
Xi,j=Ci+Aj+ε.
Значения Ci и Aj позволяют получить модель двухфакторного дисперсионного анализа с одним наблюдением в клетке. Обратным преобразованием из Ci и Aj вычисляются коэффициенты ci и aj.
При проведении дисперсионного анализа в качестве значений результативного признака Y следует взять величины:
Yij=Xi,j-X,
Рекомендуем скачать другие рефераты по теме: культурология как наука, сочинение тарас бульбо.
Категории:
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата