Образовательный портал Claw.ru
Всё для учебы, работы и отдыха
» Шпаргалки, рефераты, курсовые
» Сочинения и изложения
» Конспекты и лекции
» Энциклопедии

,

откуда

x2min =

(h)

2(km)1/2

.

Таким образом, получаем

Emin =

(h)

2

,

где  = (k/m)1/2.

Конечно, точное решение задачи об энергии основного состояния осциллятора значительно сложнее и выходит за рамки школьной математики. Интересно другое: результат, полученный нами, совпадает с точным! Кстати, это не такой уж редкий случай в физике, когда простые оценки приводят к правильному ответу.

Несмотря на простоту данного результата и необычайную легкость, с которой мы его получили, по-хорошему его надо бы вставить в рамочку и повесить на стенку рядом с уравнением Эйнштейна E = mс2. Ведь он кардинально меняет наши представления о том, что это такое, когда ничего нет.

Кстати, а о чем это мы? Зачем мы вдруг начали решать задачу об осцилляторе, если в начале так долго и красиво говорили об абсолютном вакууме. Нет, не зря мы проводили эти вычисления. Вспоминайте: вакуум - это полное отсутствие чего-либо. Именно с таким расчетом мы готовили сцену для демонстрации эффекта Казимира. Мы тщательно убирали частицы и поля, т.е. уменьшали энергию Вселенной. Действительно, была частица, была Эйнштейновская энергия mc2, не стало частицы - полная энергия системы понизилась на эту величину. Было электромагнитное поле (т.е. существовала неразрывная парочка: электрическая E плюс магнитная B составляющие) - была энергия

0 E2

2

+

B2

20

,

( здесь 0 и 0 - электрическая и магнитная постоянные, E - напряженность электрического, а B - индукция магнитного полей). Не стало электромагнитного поля, значит, снова уменьшилась полная энергия нашей сцены - Вселенной. Приготовленная к выступлению наша площадка, вакуум, это, по сути и по определению, - состояние с минимально возможной энергией. В нашей осцилляторной задаче основное состояние и есть этот "осцилляторный" вакуум. Правда, странный получился у нас ответ. Хотели получить пустоту, отсутствие чего-либо, а получили какое-то неуничтожимое дрожание. Мотивируя тем, что она живет по своим квантовым законам и Ньютон ей не указ, природа припрятала в рукаве энергию (h)/2, а, следовательно, ее "осцилляторная" шляпа отнюдь не пуста. Что-то там все время колеблется, меняется, живет, хотя мы, зрители, этого не видим. Дело в том, что согласно тем же самым квантовомеханическим правилам игры мы можем "видеть", т.е. наблюдать только среднее значение любой величины. У обнаруженного нами дрожания или, как его по-другому называют, нулевого колебания, средние значения как импульса, так и координаты равны нулю. Шаг вправо, шаг влево, а в результате остался посередине. В общем, ничего не видно, а что-то там шевелится.

Раз природа один раз оступилась и сжульничала, верить ей не приходится. Вот разрешили мы ей поиграть с электромагнитным полем, а потом попробовали отнять у нее эту игрушку, т.е. захотели получить состояние с минимальной энергией. Ну, наверняка она и здесь что-то припрятала! Вопрос только в том, сколько? Оказывается, ответ содержится в уже решенной нами задаче о шарике на пружинке.

Мы знаем из школы, что если система совершает гармонические колебания, то энергия ее имеет как раз тот вид, который мы выписали выше для энергии шарика. Надо только помнить, что "координата" теперь - это переменная, описывающая отклонение от положения равновесия. Например, для математического маятника вместо x надо поставить в наше выражение угол отклонения от вертикали , а вместо скорости - /t. Для колебательного контура вместо x надо подставить заряд Q, а вместо скорости - ток j. Разумеется, в зависимости от ситуации изменится и смысл постоянных k, m.

В случае с электромагнитным полем можно рассуждать и по-другому: аналогом энергии шарика является энергия электромагнитной волны


Рекомендуем скачать другие рефераты по теме: решебник по математике 6 виленкин, банк курсовых работ бесплатно.


Категории:




Предыдущая страница реферата | 1  2  3  4  5  6  7 |


Поделитесь этой записью или добавьте в закладки

   



Рефераты от А до Я