Морфологический анализ цветных (спектрозональных) изображений
| Категория реферата: Рефераты по математике
| Теги реферата: закон реферат, реферат молодежь
| Добавил(а) на сайт: Свирид.
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата
где ортогональный проектор определен равенством (25), а - индикаторная функция множества (31), i=1,...,N. Невязка наилучшего приближения равна
. n
Замечание 5. Так как при
,
то условия (31), определяющие разбиение , можно записать в виде
, (32)
показывающем, что множество в (32) инвариантно относительно любого преобразования изображения , не изменяющего его цвет.
Теоремы 3 и 6 позволяют сформулировать необходимые и достаточные условия наилучшего приближения изображения f(× ) изображениями (17), при котором должны быть найдены и c i0 , i=1,...,N, такие, что
.
Теорема 7. Для заданного изображения f(× ) определим множества равенствами (32), оператор П - равенством (24), - равенствами (25). Тогда ,
определено равенством (32), в котором - собственный вектор оператора Фi (23), отвечающий наибольшему собственному значению, причем в (23) , наконец, будет дано равенством (20), в котором , где - собственный вектор оператора , отвечающий наибольшему собственному значению ; наконец,
. n
Замечание 6. Следующая итерационная процедура полезна при отыскании : Для изображения f(× ) зададим и по теореме 5 найдем и , затем по теореме 3, используя найдем и . После этого вновь воспользуемся теоремой 3 и по найдем и и т.д. Построенная таким образом последовательность изображений очевидно обладает тем свойством, что числовая последовательность , k=1,2,.….. монотонно не возрастает и, следовательно, сходится. К сожалению ничего определенного нельзя сказать о сходимости последовательности .
Формы (10) и (9) удобно задавать операторами f и П*f соответственно.
Теорема 7. Форма в широком смысле изображения определяется ортогональным проектором П*f :
,
при этом и .
Доказательство. Так как для , то получаем первое утверждение. Для доказательства второго утверждения рассмотрим выпуклую задачу на минимум , решение которой определяется условиями (см., например, [11]) . Отсюда следует, что и тем самым доказано и второе утверждение n
Замечание. Так как , где fi(x) - выходной сигнал i-го детектора в точке , причем fi(x)³ 0 ,i=1,...,n, и, следовательно цвет реальных изображений непременно имеет неотрицательные , то для реальных изображений , условия и , эквивалентны. Если же для некоторого , то условие не влечет . Заметим также, что для изображений g(× ), удовлетворяющих условию , всегда .
Для спектрозональных изображений характерна ситуация, при которой k детекторов регистрируют рассеянную объектами солнечную радиацию в диапазоне видимого света, а остальные n-k регистрируют собственное тепловое излучение объектов ( в инфракрасном диапазоне). В таком случае любое изображение можно представить разложением
(40)
В котором
. Если ИК составляющей солнечного излучения можно пренебречь по сравнению с собственным излучением объектов, то представляет интерес задача приближения изображениями f(× ) , в которых f1(× ) - любая неотрицательная функция из , j 1(× ) - фиксированное векторное поле цвета, f2(× ) - термояркость, j 2(× ) - термоцвет в точке . Форма *f видимой компоненты f(× ) (40) определяется как оператор наилучшего приближения в задаче
, в данном случае
, причем *f действует фактически только на "видимую компоненту" g(× ), обращая "невидимую, ИК, компоненту" g(× ) в ноль.
Рекомендуем скачать другие рефераты по теме: оформление доклада титульный лист, понятие культуры.
Категории:
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата