Настоящая теория чисел
| Категория реферата: Рефераты по математике
| Теги реферата: экзамен, задачи курсовой работы
| Добавил(а) на сайт: Mariam.
Предыдущая страница реферата | 16 17 18 19 20 21 22 23 24 25 26 | Следующая страница реферата
5.3.1. При сложении членов цикла натуральных корней сложения
_____
Z( |р + r) количеством n и дальнейшем извлечении натуральных корней из получаемых сумм, мы получаем цикл натуральных корней
_____
сложения сумм Z( |а + b), где b = kr, где k - коэффициэнт.
Рассмотрим различные типы сложения для ряда х1,х2,х3,х4, х5,х6,х7,х8,х9.
_______ _______
1. |х1 + х2 = у1, |х3 + х4 = у2 и т.д.
При данном типе сложения коэффициент k будет равен
натуральному корню из квадрата количества членов n, т.е. при n = 2, k = 4;
n = 3, k = 9;
____
n = 4, k = 7|16;
____
n = 5, k = 7|25;
____
n = 6, k = 9|36;
____
n = 7, k = 4|49;
____
n = 8, k = 1|64;
______
Например. Сложим члены цикла Z( |0 + 2 ) при n = 7:
___
2 + 4 + 6 + 8 + 1 + 3 + 5 = 2|29,
___
7 + 9 + 2 + 4 + 6 + 8 + 1 = 1|37,
___
3 + 5 + 7 + 9 + 2 + 4 + 6 = 9|36,
___
8 + 1 + 3 + 5 + 7 + 9 + 2 = 8|35,
___
4 + 6 + 8 + 1 + 3 + 5 + 7 = 7|34,
___
9 + 2 + 4 + 6 + 8 + 1 + 3 = 6|33,
___
5 + 7 + 9 + 2 + 4 + 6 + 8 = 5|41,
___
1 + 3 + 5 + 7 + 9 + 2 + 4 = 4|31,
___
6 + 8 + 1 + 3 + 5 + 7 + 9 = 3|39.
Таким образом, мы получили ряд 2,1,9,8,7,6,5,4,3.
_____
т.е. Z( |3 + 8), где 8 = 4 * 2, т.е. k = 4.
Легко заметить, что вертикальные ряды представляют из себя циклы с дельтой, равной 5. Это будет происходить во всех случаях. Полученные вертикальные ряды будут являться циклами натуральных корней сложения с дельтой цикла d, равной натуральному корню произведения r - дельты складываемого цикла и n - количества складываемых членов.
Любопытно отметить, что при данном типе сложения натуральный
корень суммы первых семи по порядку членов циклов типа
_____
Z( |0 + r) равен r.
_______ _______
Рекомендуем скачать другие рефераты по теме: реферат народы, шпаргалки по государству и праву.
Категории:
Предыдущая страница реферата | 16 17 18 19 20 21 22 23 24 25 26 | Следующая страница реферата