Настоящая теория чисел
| Категория реферата: Рефераты по математике
| Теги реферата: экзамен, задачи курсовой работы
| Добавил(а) на сайт: Mariam.
Предыдущая страница реферата | 16 17 18 19 20 21 22 23 24 25 26 | Следующая страница реферата
3 5 7 7 19 37 61 15 65 175 369 671
1 4 9 16 1 8 27 64 125 1 16 81 256 625 1296
Как видно из примера при n=2 d=2, т.е. d=2*1, при n=3 d=6, т.е. d=2*3, при n=4 d=24, т.е. d=6*4.
Таким образом, мы имеем дело с последовательностями дельт, при извлечении натурального корня из которых мы получаем циклы натуральных корней с переменной дельтой, и только предпоследний ряд является циклом натуральных корней с постоянной дельтой, так как дает нам постоянную базовую дельту.
РАЗДЕЛ 7
ПРИНЦИПЫ ЦИКЛОВ НАТУРАЛЬНЫХ КОРНЕЙ ДЛЯ РАЗЛИЧНЫХ СИСТЕМ СЧИСЛЕНИЯ
Все принципы, изложенные в данной работе действительны для любых других систем счисления. С учетом того, что последнее однозначное число любой системы счисления ведет себя аналогично нулю, то для любой системы счисления [0,1... k]:
- сумма цифр или их комбинаций числа Х, приведенная к виду однозначного числа будет равна остатку от вычитания из числа Х целого количества числа k - последнего однозначного числа данной системы счисления;
- эманациями натурального корня а, где а [0,1... k] будут все числа, составленные по принципу nk + a;
- существуют циклы натуральных корней сложения, умножения и пр. по принципам, изложенным в работе, и с учетом количества однозначных чисел данной системы счисления.
Приведем для убедительности несколько примеров.
Семеричная система счисления [0,1,2 6]
Натуральные корни [0,1,2... 5].
Эманациями натурального корня 0 будут числа 6,15,24,33 и т.д.
Эманациями натурального корня 1 будут числа 1,10,16,25,34 и т.д.
Сумма цифр при приведении к виду однозначного числа в эманациям, как мы видим, равна натуральному корню.
Рассмотрим для данной системы счисления циклы натуральных корней сложения с постоянной дельтой:
____
Z( |0+2) - 2,4,6 имеет три члена
____
Z( |0+3) - 3,6 имеет два члена
Восьмеричная система счисления [0,1,2...7]
Натуральные корни [0,1,2...6].
Циклы натуральных корней сложения с постоянной дельтой для данной системы счисления:
____
Z( |0+2) - 2,4,6,1,3,5,7 имеет семь членов
____
Z( |0+3) - 3,6,2,5,1,4,7 имеет семь членов
Дело в том, что если количество натуральных корней данной системы счисления [0,1... k] K делится без
____
остатка на число d, т.е. K/d=c , то количество членов цикла Z( |s+d) будет равно с; если не делится без остатка, то будет равно K.
Приведем пример сложения двух циклов натуральных корней сложения в системе счисления [0,1,2...12], запись 10 - a, 11-b, 12 -c .Натуральные корни [0,1,2...b].
____ ____
Сложим Z( |1+2) - 3,5,7,9,b,1 и Z( |а+7) - 5,0,7,2,9,4,b,6,1,8,3,а
Согласно формуле 1 формул взаимодействия циклов натуральных корней
____ ____ ____
Z( |1+2) + Z( |а+7) = Z( |b+9), где b= 1 + а, 9= 2 + 7, т.е. цикл натуральных корней 8,5,2,b.
Таким образом, принципы извлечения натурального корня, построения эманаций натуральных корней и циклов натуральных корней имеют место в любой системе счисления.
РАЗДЕЛ 8
ГРАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ ЦИКЛОВ НАТУРАЛЬНЫХ КОРНЕЙ
В силу того, что натуральные корни и их последовательности являются проекцией многозначных чисел и их последовательностей, мы вправе ограничить оси координат по числу 9 для графического изображения таких проекций.
Основные принципы графического изображения циклов натуральных корней:
1. Получаемые точки (принцип получения точек см.ниже) соединяются последовательно.
2. Для данного принципа графического изображения принципиально важной является применяемая числовая последовательность.
3. Для графического изображения проекции некоторой числовой последовательности в натуральной оси координат, т.е. графического изображения некоторого цикла натуральных корней, достаточно избрать некоторую дельту количества знаков k, через которую член цикла натуральных корней будет принят за х, а следующий за ним, соответственно, за у.
Например, если мы изобразим проекцию функции у = х ,при-
меняя последовательно члены арифметической прогрессии с дельтой d = 1 и первым членом 1, т.е. цикл натуральных корней 1,4,9,7,7,9,4,1,9, с дельтой знаков k = 2 (см. график N 3 Приложения 2) и k = 3 (см. график N 4 Приложения 2), мы получим, естественно, различные графики.
Дельта знаков может представлять из себя и любую числовую последовательность.
Графическое изображение числовых последовательностей в натуральной оси координат позволяет рассмотреть свойства числовых последовательностей при их проекции на натуральные корни. Весьма любопытным для понимания взаимодействия чисел и их последовательностей является принцип совмещения графиков различных циклов натуральных корней (см. графики Приложения 2).
ЗАКЛЮЧЕНИЕ
Рекомендуем скачать другие рефераты по теме: реферат народы, шпаргалки по государству и праву.
Категории:
Предыдущая страница реферата | 16 17 18 19 20 21 22 23 24 25 26 | Следующая страница реферата