Определитель произведения прямоугольных матриц. Теорема Коши-Бине
| Категория реферата: Рефераты по математике
| Теги реферата: сочинения по литературе, оформление доклада
| Добавил(а) на сайт: Занин.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Матрица, составленная из элементов, находящихся на пересечении нескольких выбранных строк матрицы и нескольких выбранных столбцов, называется субматрицей для матрицы . Если -номера выбранных строк и -номера выбранных столбцов, то субматрица это
В частности, строки и столбцы матрицы можно рассматривать как ее субматрицы.
§2 Операции над матрицами
Определим следующие операции:
Сумма двух матриц , и с элементами и есть матрица С с элементами , запишем это как
Произведение матрицы на число поля есть матрица С с элементами , запишем как .
Произведение матрицы на матрицу есть матрица С с элементами , запишем
поле скаляров, рассмотрим , где элемент матрицы , расположенный в -строке , -столбце . Размерность матрицы .Если , то -квадратная матрица порядка . Множество -это множество всех матриц над полем .
Опр. Две матрицы равны, если они имеют одинаковую размерность и на одинаковых местах расположены одинаковые элементы. Другими словами: равна матрице , т.е
Опр. Пусть -это матрицы одинаковой размерности . Суммой матриц и называется матрица у которой в строке, столбце расположен элемент , т.е. . Другими словами: Чтобы сложить две матрицы нужно сложить соответствующие элементы:
Пример:
Опр. Пусть , , . Произведение скаляра на матрицу называется у которой в строке, столбце расположен элемент . Другими словами: Чтобы скаляр умножить на матрицу нужно все элементы матрицы умножить на скаляр .
Определение. Противоположной к матрице называется матрица
Свойства сложения и умножения матриц на скаляры:
-абелева группа
1) Сложение матриц ассоциативно и коммутативно.
2)
3)
а)
б)
4)
Глава II
Рекомендуем скачать другие рефераты по теме: доклад 6 класс, здоровый образ жизни реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата