Ряды Фурье и их приложения
| Категория реферата: Рефераты по математике
| Теги реферата: реферат на тему отношения, строительные рефераты
| Добавил(а) на сайт: Fevron'ja.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
[pic] (9)
Вводя в данном случае замену переменной [pic] и учитывая, что f(x) – периодическая функция, получим
[pic]
Складывая (9) и (10), получаем
[pic]
Отсюда
[pic]
Аналогичным образом проводим доказательство для bk.
Следствие. Если функция f(x) непрерывна, то её коэффициенты Фурье стремятся к нулю: ak > 0, bk > 0, k > ?.
Пространство функций со скалярным произведением.
Функция f(x) называется кусочно-непрерывной на отрезке [a, b], если она непрерывна на этом отрезке, за исключением, может быть, конечного числа точек, где она имеет разрывы первого рода. Такие точки можно складывать и умножать на действительные числа и получать как результат снова кусочно- непрерывные на отрезке [a, b] функции.
Скалярным произведением двух кусочно-непрерывных на [a, b] (a < b) функций f и ? будем называть интеграл
[pic] (11)
Очевидно для любых кусочно-непрерывных на [a, b] функций f , ? , ? выполняются свойства:
1) (f , ? ) =( ?, f );
2) (f , f ) и из равенства (f , f ) = 0 следует, что f(x) =0 на [a, b], исключая, быть может, конечное число точек x;
3) (? f + ? ? , ?) = ? (f , ?) + ? ( ? , ?),
где ?, ? – произвольные действительные числа.
Множество всех кусочно-непрерывных функций, определенных на отрезке [a, b], для которых введено скалярное произведение по формуле (11), мы будем обозначать, [pic] и называть пространством [pic]
Замечание 1.
В математике называют пространством [pic]= [pic](a, b) совокупность
функций f(x), интегрируемых в лебеговом смысле на [a, b] вместе со своими
квадратами, для которых введено скалярное произведение по формуле (11).
Рассматриваемое пространство [pic] есть часть [pic]. Пространство [pic]
обладает многими свойствами пространства [pic], но не всеми.
Из свойств 1), 2), 3) следует важное неравенство Буняковского | (f ,
? ) | ? (f , f )Ѕ (? , ? ) Ѕ, которое на языке интегралов выглядит так:
[pic]
Величина
[pic]
Рекомендуем скачать другие рефераты по теме: эффективность диплом, доклад по обж.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата