Ряды Фурье и их приложения
| Категория реферата: Рефераты по математике
| Теги реферата: реферат на тему отношения, строительные рефераты
| Добавил(а) на сайт: Fevron'ja.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата
Эта функция – кусочно монотонная и ограниченная. Следовательно, её можно разложить в ряд Фурье.
По формуле (4) находим:
[pic]
Применяя формулам (17), (18) и интегрируя по частям, получим:
[pic]
[pic].
Таким образом, получаем ряд:
[pic].
Это равенство имеет место во всех точках, кроме точек разрыва. В каждой точке разрыва сумма ряда равна среднему арифметическому ее пределов справа и слева, т. е. нулю.
Пример 2. Периодическая функция f(x) с периодом 2? определена следующим образом:
f(x) = -1 при –? < x < 0,
f(x) = 1 при 0 ? x ? ?.
Эта функция кусочно монотонна и ограничена на отрезке [-?, ?].
Вычислим ее коэффициенты Фурье:
[pic],
[pic]
[pic]
(Нарисовать: рис. 377, стр. 334, Пискунов)
Следовательно, для рассматриваемой функции ряд Фурье имеет вид:
[pic].
Это равенство справедливо во всех точках, кроме точек разрыва.
4. Замечание о разложении периодической функции в ряд Фурье.
Отметим следующее свойство периодической функции ?(x) с периодом 2?:
[pic], каково бы ни было число ?.
Действительно, так как ?(? - 2?) = ? (?) , то, полагая x = ? - ?, можем написать при любых c и d:
[pic].
Рекомендуем скачать другие рефераты по теме: эффективность диплом, доклад по обж.
Категории:
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата