Образовательный портал Claw.ru
Всё для учебы, работы и отдыха
» Шпаргалки, рефераты, курсовые
» Сочинения и изложения
» Конспекты и лекции
» Энциклопедии

Общепринятый сейчас способ вычисления многочленов восходит к Ньютону и называется схемой Горнера. Эта универсальная (то есть применимая к любому многочлену) схема предельно проста и изящна. Она получается из формулы (1) вынесением за скобки x всюду, где это возможно:

 f (x) = (...(((x + a1)·x + a2)·x + a3)...)·x + an.

(2)

Порядок действии при вычислении f (x) определяется скобками в (2): сначала сложение внутри самой внутренней пары скобок (его результат обозначим через p1), затем умножение и сложение внутри следующей пары скобок (результат p2) и т.д.:

 p1 = x + a1;

 p2 = p1x + a2;

 p3 = p2x + a3;

 · · · · · · · · · · · · · · · · · ·

 pn = pn–1x + an, f (x) = pn;

(3)

всего n–1 умножений и n сложений 2 .

Схема Горнера настолько совершенна, что вопрос о возможности её улучшения не возникал два с половиной века и был задан «вслух» впервые лишь в 1954 году! Постановка этого вопроса (ответ на него предполагался отрицательным) имела важные и неожиданные последствия.

§3. Индивидуальные схемы

 

— Вы позволите мне записать эту романтическую историю, сэр? — спросил потрясенный мистер Снодграсс.

— Сколько угодно, сэр, сколько угодно, ещё пятьдесят таких, если они вам по вкусу.

Ч. Диккенс

Уже в курсе школьной алгебры мы встречаемся с примерами многочленов, для которых существуют необычайно экономные схемы; единственный их недостаток — они не универсальны.

Сравнивая разные схемы по числу операций, мы будем объединять операции сложения и вычитания в группу «(+, –)-операций», а гораздо более трудоёмкие операции умножения и деления — в группу «(×, :)-операций». 3

Примеры.


Рекомендуем скачать другие рефераты по теме: бесплатные курсовые работы, банк курсовых.


Категории:




Предыдущая страница реферата | 1  2  3  4  5  6  7  8  9  10  11 |


Поделитесь этой записью или добавьте в закладки

   



Рефераты от А до Я


Полезные заметки

  •