Интегральные преобразования
| Категория реферата: Рефераты по медицине
| Теги реферата: сочинения по литературе, доклад 2011
| Добавил(а) на сайт: Ананьев.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
- Это прямое преобразование Лапласа.
Обратное преобразование есть возможность получить функцию-оригинал через известную функцию-изображение :
, где s – некоторая константа.
Пользоваться формулой для обратного преобразования можно при определенном виде функции F(p), либо для численного нахождения функции-оригинала по известному изображению.
Теоремы разложения.
Известная методика разложения дробно-рациональных функций на сумму элементарных дробей (1)-(4) может быть представлена в виде двух теорем разложения.
Первая теорема разложения. Пусть F(p) – изображение некоторой функции, тогда эта функция представляется в виде , k – постоянная, может быть сколь угодно большим числом, , то возможен почленный переход в пространство оригиналов с помощью формулы : .
Вторая теорема разложения. Если изображение представляется дробно-рациональной функцией . Степень числа s меньше степени знаменателя n, знаменатель имеет корни a1, a2, …, a n соответствующий кратности k1, k2, …, kn , при этом k1+ k2 +…+ kn = n. В этом случае оригинал функции определяется по формуле :
(3)
Например :
Связь между преобразованиями Фурье и Лапласа.
Преобразование Лапласа имеет вид :
(1)
На f(t) наложены условия :
f(t) определена и непрерывна на всем интервале: (-¥ ; ¥ )
f(t) º 0 , t Î (- ¥ ;0)
При M, S0 >0 , для всех t > 0 выполняется условие |f(t)|<Me S0t
Если отказаться от условий 2 и 3, и считать, что f(t) принимает произвольное значение при t < 0, то вместо (1) можно рассмотреть следующий интеграл :
(2)
Формула (2) – двустороннее преобразование Лапласа.
Пусть в (1) и (2) p =a + in, где a и n – действительные числа.
Предположим, что Re(p) = a = 0, т.е.
Рекомендуем скачать другие рефераты по теме: шпаргалки по психологии, оформление доклада.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата