Хаос, необратимость времени и брюссельская интерпретация квантовой механики
| Категория реферата: Рефераты по науке и технике
| Теги реферата: район реферат, решебник
| Добавил(а) на сайт: Chernakov.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8
– брюссельская интерпретация, развиваемая школой Пригожина.
Остановимся вкратце на каждой из этих интерпретаций.
а) Копенгагенская интерпретация является наиболее распространённой, но в то же время представляет (в силу исторических причин) собой скорее конгломерат различных подходов, нежели монолитную концепцию. Двумя важнейшими принципами являются общефилософский принцип дополнительности Бора и постулат редукции волнового пакета.
Принцип дополнительности первоначально возник как истолкование соотношения неопределённостей Гейзенберга. В дальнейшем Бор развил этот принцип как общенаучный и призывал к его применению в биологии, психологии и гуманитарных науках. Содержание его примерно таково: никакая классически непротиворечивая система понятий не может описать реальность, всегда существуют различные, взаимоисключающие и взаимодополняющие подходы, каждый из которых отрицает другой. Только совместное рассмотрение этих описаний может дать нам полную картину происходящих в мире событий.
Постулат редукции волнового пакета описывает процесс наблюдения квантовой системы внешним наблюдателем и утверждает, что в таком процессе происходит переход волновой функции квантового объекта в одно из собственных состояний – то есть система переходит из смешанного состояния в чистое, и переход этот необратим. Собственно, в копенгагенской интерпретации этот постулат и является тем "примечанием", вносящем необратимость времени (см. раздел 2.1) в теорию. С постулатом редукции волнового пакета связано много дискуссий и парадоксов. Копенгагенская интерпретация квантовой механики неоднократно подвергалась критике за необходимость присутствия в ней наряду с квантовыми объектами сугубо классического внешнего наблюдателя.
б) Статистическая интерпретация, или интерпретация статистических ансамблей, основана на предположении, что волновая функция квантовой системы описывает не индивидуальный объект, а ансамбль одинаковым образом приготовленных объектов. При этом признаётся фундаментальный характер вероятностных предсказаний в квантовой механике, и в этом смысле квантовомеханическое описание реальности считается полным. Вероятности того или иного результата естественным образом даётся относительно-частотное толкование. С точки зрения статистической интерпретации квантовая механика вообще не описывает индивидуальные квантовые объекты.
Нужно заметить, что в рамках статистической интерпретации вводится постулат о том, что в процессе измерения макроприбор выделяет из статистического ансамбля некоторый подансамбль, соответствующий данному результату измерения. Этот постулат фактически занимает место постулата редукции в копенгагенской интерпретации.
в)Неоклассические интерпретации квантовой механики исходят из того, что квантовомеханическое описание в действительности не является полным. Следовательно, должна существовать более общая теория, обеспечивающая наличие детерминизма классического образца. По отношению к такой теории квантовая механика была бы некоторым статистическим приближением. Наиболее распространены неоклассические теории со скрытыми параметрами. В них предполагается, что волновая функция ½y > не полностью определяет состояние системы. Наряду с ней существуют скрытые параметры x , такие, что их точное знание могло бы дать возможность предсказания результатов измерения любой физической величины. При этом сами параметры являются статистически распределёнными по некоторому закону, и мы не можем на практике точно определить значение x . Поэтому сохраняются все следствия квантовой механики, в том числе невозможность одновременного точного измерения некоммутирующих величин. Принципиальным в такой неоклассической интерпретации является факт, что существует описание состояния системы (½y >, x ), позволяющее избежать недетерминированности в предсказании результатов измерений.
Вопрос об обратимости времени в интерпретации со скрытыми параметрами не является ключевым, и остаётся столь же открытым, сколь и в копенгагенской интерпретации (особенно если из последней "удалось бы изъять" принцип редукции волновой функции).
г) Многомировая интерпретация квантовой механики (концепция Эверетта) исходит из принципа реальности волновой функции. При этом постулируется, что существует такая функция сразу для всей Вселенной, и нет необходимости в мистическом "внешнем наблюдателе", отвечающем, например, за квантовые эффекты в момент её рождения. В многомировой интерпретации место постулата редукции волнового пакета занимает понятие "ветвления волновой функции Вселенной", которое можно толковать либо образно – как появление "параллельных квантовых миров", либо чисто математически, как процедуру дефакторизации волновой функции наблюдаемого объекта [2, с.29]. При этом возникают свои математические тонкости, связанные с предпочтительным выбором базиса собственных состояний для каждого объекта во Вселенной, исключающего "лишние" ветвления для ненаблюдающихся в конкретном эксперименте объектов (своебразное применение хорошо известной "бритвы Оккама").
Наконец, брюссельская интерпретация ограничивает применимость чистых состояний (то есть точек в фазовом пространстве классической механики и волновых функций в квантовой механике) введением некоего нового принципа, который можно назвать "микроскопическим вторым началом термодинамики". При этом отвергается представление как о реальности волновой функции в старом смысле этого слова, так и о "классическом идеале" – в пользу новой концепции, в основе которой лежит необратимость времени.
3.2 Неунитарная эволюция и несводимое описание
Необратимость, выражаемая стрелой времени – свойство статистическое. Она не может быть введена на уровне отдельных траекторий (или волновых функций) и поэтому требует радиального отхода от ньютоновской механики или ортодоксальной квантовой механики, в основе которых лежат понятия траектории или отдельной волновой функции. Ещё Больцман понял, что необходим подход на основе ансамблей. Школа Пригожина реализует эту программу с необходимой математической строгостью.
Неустойчивость и хаос вынуждают отказаться от описания классической механики в терминах траекторий и перейти к описанию в терминах распределения вероятности. Примером может служить рассмотренное ранее отображение сдвига Бернулли. В разделе 1.1 был приведён явный вид оператора с дискретным временем, описывающего эволюцию плотности вероятности для сдвига Бернулли (применительно к отображениям подобный оператор называется оператором Перрона–Фробениуса). В статистической механике оператор эволюции имеет вид U(t) = e–iLt, а в квантовой механике U(t) = e–iHt. Два последних оператора унитарны, то есть сохраняют скалярное произведение, и в гильбертовом пространстве имеют собственные значения, по модулю равные 1 – то есть приводят к периодическим функциям от времени типа exp(–iEnt). В отличие от них оператор эволюции хаотических систем должен описывать приближение к равновесию и, следовательно, содержать время релаксации. Для этого требуются комплексные спектральные представления.
Оказалось, что для сдвига Бернулли в гильбертовом пространстве спектрального разложения отображения не существует. Собственные функции этого оператора не удовлетворяют условию квадратичной интегрируемости, поэтому вместо гильбертова пространства требуется перейти к так называемому обобщённому пространству, включающему наряду с квадратично интегрируемыми функциями, например, ещё и d-функции типа дираковской. Собственные значения для построенных в этом пространстве собственных функций оказываются напрямую связанными с временем Ляпунова в хаотической системе.
На языке распределений вероятности отдельная траектория для сдвига Бернулли представляется функцией rn=d(x–xn), сдвиг Бернулли преобразует её в rn+1=d(x–xn+1)= d(x–2xn) при xn0, и при t
Скачали данный реферат: Катькин, Kuanyshbaev, Русаков, Aristid, Vitol'da, Архип.
Последние просмотренные рефераты на тему: сочинение, документ реферат, контрольная по русскому языку, рефераты бесплатно скачать.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8