Полимерные электреты, их свойства и применение
| Категория реферата: Рефераты по науке и технике
| Теги реферата: сочинения по литературе, решебники 10
| Добавил(а) на сайт: Евстратий.
Предыдущая страница реферата | 9 10 11 12 13 14 15 16 17 18 19 | Следующая страница реферата
Для расчета тока релаксации необходимо в любой момент времени знать распределения концентрации свободных носителей заряда и электрического поля в пленке. Видно, что в условиях короткозамкнутой цепи ток уже не равен нулю, как было в случае релаксации за счет собственной проводимости.
Задача о переносе неравновесных носителей заряда в электрете для решения требует учета кинетики освобождения носителей с ловушек и и их повторного захвата (рис. 33).
Рис 33 Явления делокализации и повторного захвата неравновесного носителя заряда на энергетической диаграмме. А -делокализация (освобождение) носителя с ловушки в зону проводимости, В - повторный захват
За счет теплового движения происходят акты освобождения некоторых носителей с уровня ловушки, при которых они переходит в зону проводимости и могут двигаться в электрическом поле электрета. Наоборот, свободные и движущиеся в электрическом поле носители, встретив ловушку, могут быть захвачены ею. Акты освобождения и захвата происходят многократно, пока носитель движется сквозь толщу диэлектрика. Подвижность носителя зависит от таких процессов захвата
Изменения концентраций свободных М захваченных на ловушки носителей описывается кинетическими уравнениями:
(78)
(79)
где - частота освобождения носителей из ловушек, щ0t т.н. эффективный частотный фактор, фt- время повторного захвата носителя на ловушку, фf - время пролета носителем расстояния до электрода
Рассмотрим приближенное решение для случая, когда исходное распределение заряда имеет форму «ступеньки», причем а существенно меньше s. В начальные периоды релаксации форма «ступеньки» не успевает заметным образом исказиться. Кроме того, допустим, что процесс освобождения носителей с ловушек идет медленно, так что п(х,t) <<nt(х,t). В этом случае внутреннее электрическое поле электрета будет практически полностью определяться захваченным на ловушки зарядом.
Запишем уравнение Максвелла для напряженности электрического поля divD = с , которое в нашем одномерном случае примет вид:
(80)
где q[п(х,t)+пt(х,t)]=с(х,t) - плотность заряда в пленке. Умножим обе части на Е(х,t) и м, поделим на s и придем к выражению;
(81)
Проинтегрируем его по x от 0 до s:
На основании выражения (77) можно записать:
.(82)
Воспользуемся . выражением для напряженности электрического поля в пленке (34) для случая прямо-прямоугольного распределения. Подставляя его в первое слагаемое (82), делая элементарные вычисления и преобразования, приходим к выражению:
(83)
Вычислим интеграл в (82) с учетом (34);
(84)
где принято во внимание, что при х<s-а nt(х,t)=0 и подынтегральное выражение равно нулю, а при s-a≤x≤s концентрация захваченного на ловушки заряда пt(х,t)≡пt(t) не зависит от координаты.
Тогда для плотности тока ТСР получим выражение:
(85)
Осталось определить временные зависимости концентраций захваченного и свободного зарядов. Величину а мы полагаем постоянной, так как рассматриваем начальные моменты релаксации, когда край ступеньки не успевает сместиться. Это можно сделать с помощью кинетических уравнений (78) и (79) в т.н. квазистационарном приближении, когда
Рекомендуем скачать другие рефераты по теме: реферат исследование, реферат статус.
Категории:
Предыдущая страница реферата | 9 10 11 12 13 14 15 16 17 18 19 | Следующая страница реферата