Проектирование цифровой следящей системы
| Категория реферата: Рефераты по радиоэлектронике
| Теги реферата: уголовное право шпаргалки, реферати українською
| Добавил(а) на сайт: Jur'ev.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Цель курсовой работы - получить навыки расчета линейных систем автоматического управления с цифровым корректирующим звеном, роль которого может выполнять микропроцессор, управляющая вычислительная машина, или любое специализированное цифровое управляющее устройство.
В соответствии с заданием необходимо разработать следящую систему, удовлетворяющую определенным техническим условиям. Система должна обеспечивать синхронное и синфазное вращение двух осей, механически не связанных между собой. Входом системы является угол поворота сельсина- датчика, а выходом - угол поворота выходного вала редуктора, механически связанного с рабочим механизмом и с ротором сельсина-приемника.
Следящие системы рассматриваемого типа широко применяются для дистанционного управления различными механизмами, а также при построении автоматических систем управления в различных отраслях промышленности.
Для обеспечения заданных показателей качества переходного процесса в
систему вводится цифровое управляющее (корректирующее) звено. Расчет
корректирующего звена проводится методом логарифмических частотных
характеристик, разработанным для расчета непрерывных систем управления.
Использование данного метода для расчета цифрового корректирующего звена
основано на предположении о том, что при малом периоде квантования по
времени цифровая система по своим свойствам приближается к непрерывной, а
при достаточно большом числе цифровых разрядов вычислительного устройства
нелинейностью, вносимой квантованием сигналов по уровню, можно пренебречь.
Современный уровень развития цифровой вычислительной техники позволяет
применять в управляющем вычислительном устройстве период квантования
непрерывных сигналов по времени порядка 0,01-0,001с. , что обычно является
вполне достаточным для обеспечения адекватности по динамическим свойствам
цифровой и непрерывной систем.
4
190 PRINT "Введите величину макс. перерегулирования"
200 PRINT "Сигма макс.,% ="
210 INPUT SM
220 IF SM = 10 THEN C = 5: L1 = 18
230 IF SM = 15 THEN C = 4.4: L1 = 15
240 IF SM = 20 THEN C = 4: L1 = 13.5
250 IF SM = 25 THEN C = 3.6: L1 = 12
260 IF SM = 30 THEN C = 3.2: L1 = 11
270 IF SM = 35 THEN C = 3: L1 = 10.5
280 IF SM = 40 THEN C = 2.8: L1 = 10
290 PRINT "Порядок астатизма NU="
300 INPUT NU
310 PRINT "Коэффициент усиления желаемой системы Кс="
320 INPUT KC
330 PRINT "Время регулирования TR="
340 INPUT TR
350 M1 = .434
360 OC = C * 3.14 / TR
370 XC = LOG(OC) * M1
380 B = 20 * XC
390 X2 = (B - L1) / 20
400 T(2) = 1 / (10 ^ X2)
410 A = 20 * LOG(KC) * M1
420 X1 = (L1 + 40 * X2 - A) / 20
430 T(1) = 1 / (10 ^ X1)
440 X3 = (L1 + 20 * XC) / 20
450 T(3) = 1 / 10 ^ X3
460 IF NU = 1 THEN GOTO 490
470 X1 = (40 * X2 + L1 - A) / 40
480 T(1) = 1 / (10 ^ X1)
490 M = 0
510 FOR I = 1 TO N
520 IF T3(I) Ртр и выписываем его паспортные данные:
Рн - номинальная мощность (Вт); nн - номинальная скорость вращения (об/мин);
Uн - номинальное напряжение (В);
Iн - номинальный ток якоря (А);
Rд- сопротивление цепи обмотки якоря (Ом);
Jд - момент инерции якоря (кг.м2);
?д- КПД двигателя.
Затем последовательно определяем следующие величины: номинальная угловая скорость двигателя ?н (с-1) -
?н = ?nн/30 ;
номинальный момент двигателя Мн (Н.м) -
Мн = 9,55Рн/nн ;
оптимальное передаточное число редуктора iр -
[pic]
Jр = 1.10-4 кг.м2 - момент инерции редуктора.
8
35 PRINT "R(P)=K*(T1(1)*P+1)*(T1(2)*P+1)*...*(T1(N)*P+1)"
36 PRINT "Q(P)=(T2(1)*P+1)*(T2(2)*P+1)*...*(T2(N)*P+1)"
60 PRINT "Искомая дискретная передаточная функция имеет вид:"
70 PRINT "K(Z)=S(Z)/G(Z), где"
80 PRINT "S(Z)=S(0)+S(1)*Z+S(2)*Z^2+...+S(N)*Z^N"
90 PRINT G(Z)=G(0)+G(1)*Z+G(2)*Z^2+...+G(N)*Z^N+G(N+1)*
*Z^(N+1)"
100 DIM A(5), B(5), B1(5), S(5), S1(5), G(6), T1(5), T2(5)
102 FOR I = 0 TO 5
104 A(I) = 0: B(I) = 0: S(I) = 0: G(I) = 0
106 NEXT I
108 R = 1
110 PRINT "Введите порядок полинома Q(P) -N, N ? составляла прямую линию, параллельную оси
частот.
15
В области низких частот желаемая ЛАЧХ строится следующим образом. По
заданной величине коэффициента усиления системы Кс=?оmax/xmax
определяем величину LA2=20LgKc и отмечаем на чертеже точку A2 c
координатами ?A2=1 c-1 и LA2 (cм. рис.3). Через точку A2 проводим
прямую линию с наклоном -20 дБ/дек.
От точки М, ограничивающей область средних частот слева, проводим прямую линию с наклоном -40дБ/дек до пересечения с низкочастотной частью желаемой ЛАЧХ.
[pic]
Рис.3. а-а-а . . . - ЛАЧХ заданной (неизменяемой части) системы; б-б-б . . . - ЛАЧХ желаемая; с-с-с . . . - ЛАЧХ последовательного корректирующего звена
16
Порядок полинома знаменателя n должен быть не меньше порядка полинома
числителя и не больше 5.
Рекомендуем скачать другие рефераты по теме: аристотель реферат, дипломы грамоты, курсовая работа по менеджменту.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата