Численные методы
| Категория реферата: Рефераты по математике
| Теги реферата: контрольные работы 9 класс, шпаргалки по экономике
| Добавил(а) на сайт: Карев.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Пусть m=2, т.е.
Если то утверждение теоремы выполняется при Р=Е, где Е - единичная матрица второго порядка. Если , то , т.к. При этом у матрицы
все угловые миноры отличны от нуля.
Пусть утверждение теоремы верно для любых квадратных матриц порядка m-1. Покажем, что оно верно и .для матриц порядка m. Разобьем матрицу А порядка m на блоки
где
Достаточно рассмотреть два случая : и . В первом случае по предположению индукции существует матрица перестановок порядка m-1 такая, что имеет отличные от нуля угловые миноры. Тогда для матрицы перестановок
имеем
причем . Тем самым все угловые миноры матрицы РА отличны от нуля.
Рассмотрим второй случай, когда . Т.к. , найдется хотя бы один отличный от нуля минор порядка m-1 матрицы А, полученный вычеркиванием последнего столбца и какой-либо строки. Пусть, например,
где .
Переставляя в матрице А строки с номерами l и m, получим матрицу , у которой угловой минор порядка m-1 имеет вид
и отличается от (23) только перестановкой строк. Следовательно, этот минор не равен нулю и мы приходим к рассмотренному выше случаю.
Теорема доказана.
ВЫЧИСЛЕНИЕ ОПРЕДЕЛИТЕЛЯ МЕТОДОМ ГАУССА С ВЫБОРОМ ГЛАВНОГО ЭЛЕМЕНТА.
Рекомендуем скачать другие рефераты по теме: ответы школа, свобода реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата