Интеграл и его применение
| Категория реферата: Рефераты по математике
| Теги реферата: реферат на тему україна, база рефератов
| Добавил(а) на сайт: Bykov.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
= ò [F(x)+G(x)+...+H(x)] ¢dx = F(x)+G(x)+...+H(x)+C=
= ò f(x)dx + ò g(x)dx +...+ ò h(x)dx, где C=C1+C2+C3+...+Cn.
Интегрирование
Табличный способ.
Способ подстановки.
Если подынтегральная функция не является табличным интегралом, то возможно (не всегда) применить этот способ. Для этого надо:
разбить подынтегральную функцию на два множителя;
обозначить один из множителей новой переменной;
выразить второй множитель через новую переменную;
составить интеграл, найти его значение и выполнить обратную подстановку.
Примечание: за новую переменную лучше обозначить ту функцию, которая связана с оставшимся выражением.
Примеры:
1. ò xÖ(3x2–1)dx;
Пусть 3x2–1=t (t³0), возьмем производную от обеих частей:
6xdx = dt
xdx=dt/6
3
ó dt 1 1 ó 1 1 t 2 2 1 ———Ø
ô— t 2 = — ô t 2dt = – ——– + C = —Ö 3x2–1 +C
õ 6 6 õ 6 3 9
2. t
ò sin x cos 3x dx = ò – t3dt = – – + C
4
Пусть cos x = t
-sin x dx = dt
Метод преобразования подынтегральной функции в сумму или разность:
Рекомендуем скачать другие рефераты по теме: мцыри сочинение, банк дипломных работ.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата