История статистики
| Категория реферата: Рефераты по математике
| Теги реферата: рассказы, промышленность реферат
| Добавил(а) на сайт: Felicata.
Предыдущая страница реферата | 22 23 24 25 26 27 28 29 30 31 32
3. Справедливо ли сделанное предположение о законе распределения случайной величины.
Рассмотрим эти этапы более подробно.
1. Так как для установления закона распределения необходимы большие выборки, то на практике часто встает вопрос об объединении нескольких выборок, каждая из которых мала для решения поставленной задачи и получения одной общей выборки, удовлетворяющей предъявленным к ней требованиям. Поэтому, что вообще свойственно для статистической обработки, любое из неправильных решений (как положительное, так и отрицательное) по поводу объединения выборок приводит к нежелательным результатам, или к невозможности установить закон распределения, если выборки не объединяются, или к неправильному выводу о характере закона распределения.
Для решения этой задачи используют критерии, с помощью которых с разной формулировкой фактически дается ответ на один и тот же вопрос: принадлежат или не принадлежат исследуемые выборки одной генеральной совокупности, то есть автоматически решается задача о возможности или невозможности их объединения. Как правило, все эти критерии основаны на сравнении выборочных характеристик (выборочных дисперсий или средних величин) между собой или с соответствующими генеральными характеристиками. В большинстве случаев использование этих критериев предполагает нормальный или логарифмически-нормальный закон распределения для каждой выборки. При других же законах распределения эти критерии некорректны и их использование может привести к ошибочным результатам.
Наиболее используемыми являются следующие критерии:
а) критерии, основанные на сравнении дисперсий: критерий , критерий Фишера (F = ), критерий Хартлея (Fmax = ), критерий Кочрена (Gmax = ), критерий Бартлета (χ2);
б) критерии, основанные на сравнениях средних величин: критерий Стьюдента (t), критерий Z и другие.
Для всех критериев в качестве нулевой гипотезы (H0) выдвигается предположение о принадлежности выборки генеральной совокупности или об однородности выборок между собой.
2. При наличии выборки, удовлетворяющей требованиям относительно ее пригодности для установления закона распределения перед тем, как приступить к определению статистических характеристик, необходимо проверить, принадлежат ли к данной выборке ее члены, резко отличающиеся от большинства данных, если таковые имеются. Такая проверка строго обязательна, так как любое неверное решение в отношении резко отличающихся результатов приводит к искажению вида кривой закона распределения и к последующим ошибкам, о которых уже говорилось выше. Описанная проверка также осуществляется с помощью соответствующих критериев: критерия Груббса (для малых выборок), критерия Ирвина и некоторых других. В качестве нулевой гипотезы во всех случаях принимается предположение о том, что резко выделяющиеся результаты принадлежат данной выборке.
3. Заключительной и самой трудоемкой проверкой является проверка гипотез о виде функции распределения или, что то же, о соответствии предполагаемого закона теоретического распределения эмпирическому. Эта проверка осуществляется с помощью так называемых критериев согласия. Существуют критерии для проверки соответствия как предполагаемому нормальному или логарифмически-нормальному закону распределения, так и любому другому закону распределения.
Наиболее используемыми при практических расчетах являются следующие критерии:
а) критерий Пирсона (χ2); он справедлив при больших объемах выборок и для любых законов распределения;
б) критерий Колмогорова-Смирнова (Du); этот критерий используется для проверки гипотезы о соответствии эмпирического распределения любому теоретическому закону распределения с заранее известными параметрами, что накладывает ограничения на его использование. В то же время Du является более мощным, чем критерий χ2;
в) критерий Крамера-Мизеса (w2); данный критерий используется для объемов выборок 50 £ n £ 200 и является более мощным, чем χ2, однако, при его применении требуется больший объем вычислений. Поэтому при n > 200 этот критерий целесообразно использовать только в тех случаях, когда проверки гипотезы по другим критериям не приводят к безусловным результатам;
г) критерий Шапиро-Уилкса (W); он предназначен для проверки гипотезы о нормальном или логарифмически нормальном законе распределения при ограниченном объеме выборки (n £ 50) и является более мощным, чем другие критерии.
Укрупненно порядок проведения статистической обработки информации можно представить следующим образом: после решения вопроса об объеме выборки и принадлежности к ней резко отличающихся результатов, строится гистограмма, рассчитываются статистические характеристики исследуемой случайной величины, и устанавливается закон ее распределения.
При решении технических и экономических задач существует достаточно широкий круг законов распределения, которым подчиняются те или иные процессы. К ним относятся законы Вейбулла, Релея, экспоненциальный, гамма-распределения, однако, самыми распространенными являются нормальный (Гаусса) и логарифмически-нормальный законы распределения. Получив математическое выражение закона распределения, то есть соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями, можно утверждать, что с вероятностной точки зрения, случайная величина описана полностью.
Скачали данный реферат: Казимиров, Гретченко, Рязанцев, Jahnenko, Лавров, Рыбаков.
Последние просмотренные рефераты на тему: диплом, мировая торговля, рефераты бесплатно, реферат орган.
Категории:
Предыдущая страница реферата | 22 23 24 25 26 27 28 29 30 31 32