Образовательный портал Claw.ru
Всё для учебы, работы и отдыха
» Шпаргалки, рефераты, курсовые
» Сочинения и изложения
» Конспекты и лекции
» Энциклопедии

Отклонения от гипотетического математического ожидания в сумме составляют в нашем примере точно 0 и нам необходимо определить количество вариантов, в которых сумма S>0. Всего вариантов 16, а вариантов с нулевой или положительной суммой 9. Вероятность ошибки при отклонении Њ0 оказалась равной 9/16@ 0.57, что намного больше контрольных 5 % . Как и следовало ожидать, нам нет смысла отбрасывать нулевую гипотезу – слишком велика ошибка первого рода.

Все было бы хорошо, но если мы выдвинем другую нулевую гипотезу о математическом ожидании выручки, например – Њ0: M(G)= 196 гривен, то после аналогичных расчетов получим результат – и эту гипотезу нет оснований отбрасывать, правда вероятность ошибки первого рода теперь будет иной – “всего лишь” 0.125. Столько же составит вероятность этой ошибки и при Њ0: M(G)= 214. Таким образом, все нулевые гипотезы со значениями от 196 до 214 можно не отвергать (не достигнуто пороговое значение 0.05). Можно ли рекомендовать принятие альтернативной гипотезы и, если – да, то при каком значении гипотетического математического ожидания?

Теория прикладной статистики отвечает на этот вопрос однозначно – нет, рекомендовать нам это она не вправе!

Вспомним “неудобное” свойство статистических выводов или рекомендаций – они никогда не бывают однозначными, конкретными. Поэтому наивно ожидать решения задачи об оценке математического ожидания по данным наблюдений в виде одного, конкретного числа.

Еще раз продумаем, чего мы добиваемся, меняя значение в нулевой гипотезе? Ведь самая большая ошибка первого рода была как раз тогда, когда мы выдвинули такое понятное предположение – математическое ожидание равно среднему.

Более того, проверка нулевой гипотезы такого вида была совершенно бессмысленным делом. Практически всегда в этих случаях альтернативная гипотеза окажется самой вероятной, но практически никогда вероятность ее истинности не достигнет желанных 95 %.

Всё дело в том, что просчитать последствия своего решения мы умеем только отвергая нулевую гипотезу, но, принимая ее, последствия просчитать не можем.

Вот если бы, передвигая воображаемый указатель по шкале СВ мы получили сигнал “СТОП, достаточно! Достигнут уровень ошибки 5 %”, то мы бы запомнили данное значение как левую (или правую) границу интервала, в котором почти “наверняка” лежит искомое нами математическое ожидание. В нашем примере этого не произошло и, оказывается и не могло произойти.

Дело в том, что у нас всего 4 наблюдения (196,208,210,214) со средним значением 207 и среднеквадратичным отклонением около 13.5 гривен (т.е. более 6 % от среднего). И получить значимые статистические выводы в этом случае просто невозможно – надо увеличить объем выборки, число наблюдений.

А вот на вопрос – а сколько же надо наблюдений, каково их достаточное число, прикладная статистика имеет ответ: для “преодоления 5 % барьера” достаточно 5 наблюдений.

Попробуем решить другую задачу об оценке математического ожидания СВ на интервальной шкале, но будем решать её не “по чувству”, а “по разуму”.

· Наблюдения над случайной величиной X: 19,17,15,13,12,11,10,8,7.

· Количество наблюдений: 9, возможных исходов 512.

· Њ0: M(X)= 9, Њ1: M(X)# 9.

Найдем сумму отклонений от гипотетического среднего, S = 31.

Из 512 возможных вариантов суммы отклонений выберем только те, в которых эта сумма составляет 31 и более. Таких вариантов всего 11, значит при принятии нулевой гипотезы Њ0: M(X)= 9 вероятность наблюдать такие суммы P(S ³ 31) составляет 11/512 @ 0.02 , что меньше порогового значения в 5 % .

Вывод: гипотезу Њ0 следует отвергнуть и считать приемлемым по надежности неравенство M(X) # 9.

До сих пор мы выдвигали гипотезу о значении математического ожидания на “левом крае” распределения наблюдений и могли бы повторять проверки, задаваясь значениями M(X) в 10, 11 и т.д., до тех пор, пока вероятность ошибки первого рода не достигла бы порогового значения.

Можно также исследовать правый край распределения – проверять гипотезы при больших значениях математического ожидания.

Например:

· Наблюдения над случайной величиной X: 19,17,15,13,12,11,10,8,7.

· Количество наблюдений: 9, возможных исходов 512.

· Њ0: M(X)= 17, Њ1: M(X)# 17.

Теперь сумма отклонений от гипотетического среднего окажется S = – 41.

Из 512 возможных вариантов суммы отклонений выберем только те, в которых эта сумма составляет –41 и менее. Таких вариантов всего 3, значит при принятии нулевой гипотезы Њ0: M(X)= 17 вероятность наблюдать такие суммы составляет P(S £ – 31) = 3/512 @ 0.006 , что намного меньше порогового значения в 5 % . Следовательно, можно попробовать гипотезы с меньшим M(X), сужая диапазон или так называемый доверительный интервал для неизвестного нам математического ожидания.

Оценка наблюдений при известном законе распределения

Не всегда закон распределения СВ представляет для нас полную тайну. В ряде случаев у нас могут быть основания предполагать, что случайные события, определяющие наблюдаемые нами значения этой величины, подчиняются определенной вероятностной схеме.

В таких случаях использование методов выдвижения и проверки гипотез даст нам информацию о параметрах распределения, что может оказаться вполне достаточно для решения конкретной экономической задачи.

Оценка параметров нормального распределения

Нередки случаи, когда у нас есть некоторые основания считать интересующую нас СВ распределенной по нормальному закону. Существуют специальные методы проверки такой гипотезы по данным наблюдений, но мы ограничимся напоминанием природы этого распределения – наличия влияния на значение данной величины достаточно большого количества случайных факторов.

Напомним себе также, что у нормального распределения всего два параметра – математическое ожидание m и среднеквадратичное отклонение s .

Пусть мы произвели 40 наблюдений над такой случайной величиной X и эти наблюдения представили в виде:

Таблица 5-2

Xi

85

105

125

145

165

185

205

225

Всего

ni


Рекомендуем скачать другие рефераты по теме: скачать доклад бесплатно, вирусы реферат.


Категории:




Предыдущая страница реферата | 13  14  15  16  17  18  19  20  21  22  23 |


Поделитесь этой записью или добавьте в закладки

   



Рефераты от А до Я


Полезные заметки

  •