Математическая статистика
| Категория реферата: Рефераты по математике
| Теги реферата: контрольная 2, древний реферат
| Добавил(а) на сайт: Кожевин.
Предыдущая страница реферата | 9 10 11 12 13 14 15 16 17 18 19 | Следующая страница реферата
Выше говорилось о том, что если для двух случайных величин X и Y имеет место равенство P(X Ç Y) = P(X)· P(Y), то эти величины считаются независимыми. Ну, а если это не так!?
Ведь всегда важно знать: насколько зависит одна СВ от другой? Дело не только в присущем людям стремлении анализировать что-либо обязательно в числовом измерении. Уже понятно, что прикладная статистика требует непрерывных вычислений, что использование компьютера вынуждает нас работать с числами, а не с понятиями.
Для числовой оценки взаимосвязи между двумя СВ: Y – с известными M(Y) и s y
и X – с M(X) и s x принято использовать так называемый коэффициент корреляции
. {3–1}
Обратим внимание на способ вычисления коэффициента корреляции. В числителе находится математическое ожидание произведения отклонений величин X и Y от собственных математических ожиданий.
Этот коэффициент может принимать значения от –1 до +1 — в зависимости от тесноты и характера связи между данными СВ.
Если коэффициент корреляции равен нулю, то X и Y называют некоррелированными. Считать их независимыми обычно нет оснований — оказывается, что существуют такие, как правило — нелинейные связи величин, при которых коэффициент корреляции равен нулю, хотя величины зависят друг от друга.
Обратное всегда верно — если величины независимы, то R(XY) = 0. Но, если модуль R(XY) равен 1, то есть все основания предполагать наличие линейной связи между Y и X. Именно поэтому часто говорят о линейной корреляции при использовании такого способа оценки связи между СВ.
Если у нас имеется ряд наблюдений за двумя случайными величинами, то можно оценить выборочное значение коэффициента корреляции –
{3–2}
Оценку корреляционной связи двух СВ можно производить и без учета их дисперсий.
Числитель коэффициента корреляции
. {3–3}
называют ковариацией случайных величин, которая также служит мерой связи, но без непосредственного учета дисперсий.
Различие между такими двумя показателями парной связи СВ достаточно существенное.
· Коэффициент корреляции определяет степень, тесноту линейной связи между величинами и является безразмерной величиной.
· Ковариация двух СВ определяет эту связь безотносительно к ее виду и является величиной размерной.
Множественная корреляцияВ ряде случаев статистического анализа приходится решать вопрос о связях нескольких (более 2) СВ или вопрос о множественной корреляции.
Пусть X, Y и Z – случайные величины, имеющие математические ожидания M(X), M(Y), M(Z) и среднеквадратичные отклонения s x ,s y, s z соответственно. Тогда можно найти парные коэффициенты корреляции Rxy, Rxz, Ryz по приведенной выше формуле.
Но этого явно недостаточно – ведь мы на каждом из трех этапов попросту забывали о наличии третьей СВ! Поэтому в случаях множественного корреляционного анализа иногда требуется отыскивать т. н. частные коэффициенты корреляции — например, оценка виляния Z на связь между X и Y производится с помощью коэффициента
И, наконец, можно поставить вопрос — а какова связь между данной СВ и совокупностью остальных? Ответ на такие вопросы дают коэффициенты множественной корреляции RX.YZ, RY.XZ, RZ.XY, формулы для вычисления которых построены по тем же принципам — учету связи одной из величин со всеми остальными в совокупности.
Рекомендуем скачать другие рефераты по теме: скачать доклад бесплатно, вирусы реферат.
Категории:
Предыдущая страница реферата | 9 10 11 12 13 14 15 16 17 18 19 | Следующая страница реферата