Математическая статистика
| Категория реферата: Рефераты по математике
| Теги реферата: контрольная 2, древний реферат
| Добавил(а) на сайт: Кожевин.
Предыдущая страница реферата | 10 11 12 13 14 15 16 17 18 19 20 | Следующая страница реферата
Проверка статистических гипотез Понятие статистической гипотезы
Как уже отмечалось, основным занятием статистика–прикладника является чаще всего решение вопроса о том, что и как можно извлечь из наблюдений над случайной величиной (выборочных её значений) для последующего использования в практике.
Скажем, для некоторой экономической задачи требуется знание длины очереди автомашин, ожидающих технического обслуживания, а эта величина хоть и выражается целым числом, но является случайной.
Очень редко задачи такого рода имеют “теоретическую платформу” – хотя бы в части закона распределения СВ, не говоря уже о внутренних параметрах этого распределения или его моментах. Чаще всего в нашем распоряжении нет практически ничего, кроме некоторого количества наблюдений за значениями СВ и … необходимости решать задачу.
Выражаясь чисто научным языком, современный подход к статистическим задачам в последние два десятилетия заключается в использовании непараметрической статистики, а не традиционных, классических методов, которые применимы только при заранее известных законах распределений.
Но и в первом, и во втором случаях одной из важнейших задач профессионального статистика является проверка выдвинутых им же предположений или гипотез.
Чем же отличаются статистические гипотезы от обычных, житейских предположений? Прежде всего, тем, что статистических гипотез всегда две и они взаимоисключающие. Одна из них (обычно та, которую предполагают отклонить) носит название нулевой гипотезы Њ0, вторая – альтернативная гипотеза Њ1 всегда отрицает нулевую, противостоит ей.
Вся “хитрость” заключается именно в нулевой гипотезе – её надо построить, сформулировать так, чтобы иметь возможность найти интересующие нас вероятности в условиях истинности этой гипотезы.
Пусть мы исследуем игральную кость – “проверяем” ее симметричность. Ясно, что в качестве нулевой гипотезой надо считать предположение о полной симметрии кости.
Ведь если Њ0 верна, то вероятности выпадения всех шести цифр на гранях будут одинаковы – по 1/6 . А вот выдвижение в качестве нулевой гипотезы предположения об асимметрии кости ничего бы не дало – в этом случае мы ничего не можем сказать о значениях вероятностях выпадения цифр.
С процедурами проверки статистических гипотез неразрывно связано еще одно, непривычное для обычных расчетных работ, понятие уровня значимости результатов наблюдений.
В самом начале курса уже упоминался метод выделения редких событий – вероятность которых не превышает 5 %. Конечно, это значение является чисто условным – в некоторых случаях редкими считают события с вероятностью не более 1 %.
Теория вероятностей позволяет обосновать деление случайных событий на три класса – обычные, редкие и исключительные. При этом наблюдение события исключительного дает основания считать, что причины его наступления являются уже неслучайными – имеет место влияние некоторого фактора.
Будем далее использовать 5 % уровень значимости, как это принято почти во всех прикладных направлениях статистики, в том числе и в экономике.
Итак, если наблюдения относятся к событиям редким (с вероятностью до 5 %), то такие наблюдения и результаты их обработки будем называть статистически значимыми. Как же так, спросите вы, – вероятность мала, а предлагается считаться с ней. Все очень просто – если мы вычислили вероятность некоторого результата наблюдения в условиях основной гипотезы и она (априорная вероятность) оказалась очень малой, то чем она меньше, тем больше у нас оснований отвергнуть Њ0. С другой стороны, если мы увидели очень редкое событие – выпадение 10 гербов при 15 подбрасываниях монетки, то значимость такого наблюдения чрезвычайно высока – гипотезу о симметрии вполне можно отбросить.
Критерии статистических гипотез
Если мы пытаемся решить некоторую статистическую задачу, то в большинстве случаев нам придется заниматься не столько математическими выкладками и числовыми расчетами, сколько принимать решение – какую из выдвинутых нами же статистических гипотез принять (или – какую из них отвергнуть).
Так вот, решающее правило, согласно которому мы будем действовать, принято называть статистическим критерием. К сожалению, не существует единого, универсального критерия значимости – их приходится разрабатывать в теории и использовать на практике применительно к особенностям конкретных задач.
Вместе с тем, любому критерию значимости присуще одно и то же свойство – во всех случаях мы не получим категоричного указания на “истинную” гипотезу, прямого ответа на вопрос – какую из гипотез нам принять.
Еще более непривычным для человека с навыками искать и находить ответы в расчетных задачах, будет сама форма ответа на вопрос о сравнении гипотез Њ0 и Њ1 – например, в таком виде "если отбросить нулевую гипотезу, то вероятность ошибки такого действия не превосходит 3 % ".
Дальше уже наше дело, принять или отвергнуть ту или иную гипотезу – теория большего дать не в состоянии. Надо понять различие между выделенным утверждением и вроде бы аналогичным – "вероятность верности гипотезы Њ1 составляет 97%" . Все между тем очень просто – вычислить возможно только вероятность ошибочности Њ0 и не более того!
Пусть мы интересуемся симметрией обычной монетки и собираемся проводить эксперименты – подбрасывать её и фиксировать результаты. Выдвинем гипотезу – монета симметрична. Если мы собираемся произвести N подбрасываний и по их итогам проверить гипотезу, должны просчитать вероятности выпадения 0, 1, 2 и т.д. до N “гербов”. Конечно, можно выполнить расчеты и после окончания опыта – всё равно это будут априорные вероятности по своей сути.
Проиллюстрируем это на рассмотренной ранее ситуации 8 экспериментов с монеткой. Предположим, что частости появления возможных исходов уже вычислены – в таких случаях говорят о наличии выборочного распределения вероятностей. Для нашего эксперимента такое распределение имеет вид:
Рекомендуем скачать другие рефераты по теме: скачать доклад бесплатно, вирусы реферат.
Категории:
Предыдущая страница реферата | 10 11 12 13 14 15 16 17 18 19 20 | Следующая страница реферата