Математическая статистика
| Категория реферата: Рефераты по математике
| Теги реферата: контрольная 2, древний реферат
| Добавил(а) на сайт: Кожевин.
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата
Но теория и практика статистики требуют использовать понятие непрерывной СВ – допускающей любые числовые значения на шкале типа Int или Rel . И дело здесь вовсе не в том, что физические величины теоретически могут принимать любые значения – в конце концов, мы всегда ограничены точностью приборов их измерения. Причина в другом…
Математическое ожидание, дисперсия и другие параметры любых СВ практически всегда вычисляются по формулам, вытекающим из закона распределения. Это всего лишь числа и далеко не всегда целые.
Так обстоит дело в теории. На практике же, мы имеем только одно – ряд наблюдений над случайной (будем далее полагать – всегда дискретной) величиной. По этим наблюдениям можно строить таблицы или гистограммы, используя значения соответствующих частот (вместо вероятностей). Такие распределения принято называть выборочными, а сам набор данных наблюдений – выборкой.
Пусть мы имеем такое выборочное распределение некоторой случайной величины X – т.е. для ряда ее значений (вполне возможно неполного, с “пропусками" некоторых допустимых) у нас есть рассчитанные нами же частоты f i .
В большинстве случаев нам неизвестен закон распределения СВ или о его природе у нас имеются догадки, предположения, гипотезы, но значения параметров и моментов (а это неслучайные величины!) нам неизвестны.
Разумеется, частоты fi суть непрерывные СВ и, кроме первой проблемы – оценки распределения X, мы имеем ещё одну – проблему оценки распределения частот.
Существование закона больших чисел, доказанность центральной предельной теоремы поможет нам мало:
· во-первых, надо иметь достаточно много наблюдений (чтобы частоты “совпали” с вероятностями), а это всегда дорого;
· во-вторых, чаще всего у нас нет никаких гарантий в том, что условия наблюдения остаются неизменными, т.е. мы наблюдаем за независимой случайной величиной.
Теория статистики дает ключ к решению подобных проблем, предлагает методы “работы” со случайными величинами. Большинство этих методов появилось на свет как раз благодаря теоретическим исследованиям распределений непрерывных величин.
Нормальное распределение
Первым, фундаментальным по значимости, является т.н. нормальный закон распределения непрерывной случайной величины X, для которой допустимым является любое действительное числовое значение. Доказано, что такой закон распределения имеет величина, значение которой обусловлено достаточно большим количеством факторов (причин).
Для вычисления вероятности того, что X лежит в заранее заданном диапазоне, получено выражение, которое называют интегралом вероятности:
P(a £ X £ b) =
Обратим внимание на то, что в это выражение входят две константы (параметра) m и s . Как и для любой (не обязательно дискретной) СВ, здесь также имеют смысл понятия моментов распределения и оказывается, что
M(X) = m , а D(x) = s 2 . {2–10}
Для непрерывно распределенных величин не существует понятия вероятности конкретного значения. Вопрос – “какова вероятность достижения температурой воздуха значения 14 градусов?” – некорректен. Все зависит от прибора измерения, его чувствительности, ошибок измерения. Но вместе с тем функция под интегралом вероятности существует, она однозначно определена:
j (X) = ,
ее график (аналог гистограммы) имеет вид:
Рекомендуем скачать другие рефераты по теме: скачать доклад бесплатно, вирусы реферат.
Категории:
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата