Математическая статистика
| Категория реферата: Рефераты по математике
| Теги реферата: контрольная 2, древний реферат
| Добавил(а) на сайт: Кожевин.
Предыдущая страница реферата | 11 12 13 14 15 16 17 18 19 20 21 | Следующая страница реферата
Таблица 4–1
Число наблюдений гербов k |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
Вероятность P(X =k) в 1 / 256 |
1 |
8 |
28 |
56 |
70 |
56 |
28 |
8 |
1 |
Вероятность P(X £ k) в 1 / 256 |
1 |
9 |
37 |
93 |
163 |
219 |
247 |
255 |
256 |
Если мы в результате эксперимента получили сумму гербов S = 1, то вероятность наблюдать такую сумму (и менее вероятное значение S=0) составляет для симметричной монетки P(S <2) = (1+8) / 256 @ 0.036. Можно, однако, рассуждать и иначе. Ведь мы наблюдали в том же опыте 7 появлений “решки”. Вероятность наблюдать такое и менее вероятное число 8 составляет точно столько же – P(S>6) = (1+8) / 256 @ 0.036. Осталось построить решающее правило – критерий для принятия окончательного решения в отношении выдвинутых гипотез (основной Њ0 и альтернативной Њ1).
Заметим, что при выдвинутой нами основной гипотезе Њ0:(p=q) альтернативную гипотезу можно выдвигать по разному:
Њ1: (p#q) – монета несимметрична, ненаправленная гипотеза, требующая использования двухсторонних вероятностей;
Њ1: (p<q) – монета несимметрична и при этом “герб” легче, направленная гипотеза, достаточно односторонних вероятностей.
Применим оба приема построения критерия в условиях нашего примера.
· Нулевая гипотеза Њ0: (p=q). Альтернативная гипотеза Њ1: (p#q).
Уровень значимости a =0.05. Итог наблюдений при N=8: S= 1 .
Вероятность такого итога при условии, что нулевая гипотеза верна составляет
Рекомендуем скачать другие рефераты по теме: скачать доклад бесплатно, вирусы реферат.
Категории:
Предыдущая страница реферата | 11 12 13 14 15 16 17 18 19 20 21 | Следующая страница реферата