Математическая статистика
| Категория реферата: Рефераты по математике
| Теги реферата: контрольная 2, древний реферат
| Добавил(а) на сайт: Кожевин.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Подобные логические рассуждения приведут нас к более общей формуле - сложения вероятностей. Пусть некоторое случайное событие может произойти только в одном из 5 вариантов, т.е. пусть имеется система из трех несовместимых событий A, B и C .
Тогда очевидно, что:
P(A) + P(B) + P(C) = 1; {1–2} и столь же простые рассуждения приведут к выражению для вероятности наступления одного из двух несовместимых событий (например, A или B):
P(AÈ B) = P(A) + P(B); {1–3} или одного из трех:
P(AÈ BÈ C) = P(A) + P(B) + P(C); {1-4} и так далее.
Рассмотрим чуть более сложный пример. Пусть нам надо найти вероятность события C, заключающегося в том, что при подбрасывании двух разных монет мы получим герб на первой (событие A) и на второй (событие B). Здесь речь идет о совместном наступлении двух независимых событий, т.е. нас интересует вероятность P(C) = P(AÇ B).
И здесь метод построения схемы событий оказывается чудесным помощником - можно достаточно просто доказать, что
P(AÇ B) =P(A)· P(B). {1-5} Конечно же, формулы {1-4} и {1-5} годятся для любого количества событий: лишь бы они были несовместными в первом случае и независимыми во втором.
Наконец, возникают ситуации, когда случайные события оказываются взаимно зависимыми. В этих случаях приходится различать условные вероятности:
P(A / B) – вероятность A при условии, что B уже произошло;
P(A / ) – вероятность A при условии, что B не произошло,
называя P(A) безусловной или полной вероятностью события A .
Выясним вначале связь безусловной вероятности события с условными. Так как событие A может произойти только в двух, взаимоисключающих вариантах, то, в соответствии с {1–3} получается, что
P(A) = P(A/B)· P(B) + P(A/)· P(). {1–6}
Вероятности P(A/B) и P(A/) часто называют апостериорными (“a posteriopri” – после того, как…), а безусловную вероятность P(A) – априорной (“a priori” – до того, как…).
Очевидно, что если первым считается событие B и оно уже произошло, то теперь наступление события A уже не зависит от B и поэтому вероятность того, что произойдут оба события составит
P(AÇ B) = P(A/B)· P(B). {1–7} Так как события взаимозависимы, то можно повторить наши выводы и получить
P(B) = P(B/A)· P(A) + P(B/)· P(); {1–8}
а также P(AÇ B) = P(B/A)· P(A). {1–9}
Мы доказали так называемую теорему Байеса
P(A/B)· P(B) = P(B/A)· P(B); {1–10} – весьма важное средство анализа, особенно в области проверки гипотез и решения вопросов управления на базе методов прикладной статистики.
Подведем некоторые итоги рассмотрения вопроса о вероятностях случайных событий. У нас имеются только две возможности узнать что либо о величине вероятности случайного события A:
· применить метод статистического моделирования - построить схему данного случайного события и (если у нас есть основания считать, что мы правильно ее строим) и найти значение вероятности прямым расчетом;
Рекомендуем скачать другие рефераты по теме: скачать доклад бесплатно, вирусы реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата