Математическое моделирование
| Категория реферата: Рефераты по математике
| Теги реферата: цель реферата, учет реферат
| Добавил(а) на сайт: Nikolaenko.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Оценка тесноты индивидуальной связи функции и аргумента при множественной регрессии с помощью коэффициента частной корреляции является более достоверной. Это соображение подтверждается уменьшением рассеяния точек относительно линии частной регрессии по сравнению с линией парной регрессии. Следовательно, даже при уменьшении коэффициента частной корреляции по сравнению с парным при частной регрессии наблюдается более тесная связь между функцией и аргументом.
Для расчета по формуле (30) необходимо рассчитать коэффициенты регрессии с помощью систем уравнений отдельно для п и п—1 аргументов. При этом значения коэффициентов будут различными.
Итак, в результате решения уравнения множественной регрессии , можно найти численные значения коэффициентов а, b1, b 2, b 3, ..., bп. , определить показатели тесноты связи, а именно коэффициент множественной корреляции R, коэффициент детерминации , коэффициенты частной корреляции r'ух i.
Несмотря на то что уравнения частной линейной регрессии характеризуют реальную взаимосвязь функции и i-того аргумента с большей достоверностью, чем уравнения парной регрессии, они во многих случаях не удовлетворяют исследователей. Недостаток уравнений частной линейной регрессии заключается в том, что анализируемая зависимость представляется в виде прямой. В действительности, большинство взаимосвязей параметров металлургических процессов имеет криволинейный характер. Любое техническое мероприятие тем эффективней, чем хуже абсолютные исходные показатели.
Для повышения достоверности взаимосвязей параметров технологического процесса необходимо определить уравнения частной криволинейной регрессии. Рассмотрим несколько способов такого определения.
ЧАСТНАЯ КРИВОЛИНЕЙНАЯ РЕГРЕССИЯ НА ОСНОВЕ МНОЖЕСТВЕННОЙ ЛИНЕЙНОЙ РЕГРЕССИИДля упрощения рассмотрим задачу, в которой фигурируют два аргумента ( x 1 и x2) и функция у. Рассчитаем уравнение множественной линейной регрессии, т. е. определим численные значения коэффициентов а, b 1 и b 2
Найдем уравнения частной криволинейной регрессии. Например, чтобы получить уравнение частной регрессии у по x 2, нужно исключить влияние на у аргумента x 1. Для этого можно использовать следующий прием: каждое значение функции у в таблице исходной информации нужно скорректировать на величину отклонения первого аргумента от своего среднего, пользуясь для этого найденным угловым коэффициентом регрессии bi.Тогда каждое скорректированное значение функции у' будет равно:
y'j = y j - (x 1j - Xj ) b 1 , ( 31где y j—значение функции в таблице исходной информации
x 1j —значение первого аргумента в таблице исходной информации;
Xj - среднее значение первого аргумента
Таким образом, скорректированное значение функции представляет собой фактическое значение функции скорректированное на влияние первого аргумента. В результате получаем ряд скорректированных значений функции, который не имеет регрессионной связи с рядом значений первого аргумента (коэффициент корреляции между скорректированной функцией и первым аргументом равен нулю).
Если в задаче имеется, например, п аргументов, то корректировка исходных значений функции должна быть выполнена по всем аргументам, кроме одного, частную связь которого с функцией предполагается определить. Для этого скорректированные значения функции у по всем аргументам, кроме второго, можно рассчитать по уравнению:
y'j = y j - (x 1 j - X 1j ) b 1- (x 3 j - Xj ) b 3- (xn j - X n ) b n ( 32 )угловой коэффициент регрессии из Таким:
^ == 523,0— 0,00493 Шл + 0,0001155 Шл".
Расчет парной криволинейной связи между у' j и х 2j может быть выполнен по методике, рассмотренной выше с использованием метода наименьших квадратов. Например, если для аппроксимации связи выбрана парабола второго порядка, то уравнение частной криволинейной регрессии следующее
у** j =а** + b**2 x2 + c**2 x22 ( 33) .а разность между точкой, лежащей на кривой, и данной точкой корреляционного поля
D yj = y'j - у** j = y'j - (а** + b**2 x2 + c**2 x22) (34 )При этом сумма квадратов расстояний от каждой точки корреляционного поля до новой линии регрессии в случае параболы второго порядка будет иметь вид:
S 2 = S D yj 2= S [ y'j - (а** + b**2 x2 + c**2 x22)] 2 ( 35 )Исходя из условия минимума этой суммы, частные производные S 2 по а**, b** 2 и с** 2 приравниваются к нулю. Выполнив необходимые преобразования, получим систему трех уравнений с тремя неизвестными для определения a**, b** и с**.
, S y' = m a** + b**2 S x2 + c**2 S x2 2 S y'x 2 = a** S x2 + b**2 S x2 2+ c** 2 S x2 3 S y'x22 =a** S x 22 + b**2 S x2 3 + c**2 S x2 4. ( 36 )Решая систему уравнений (36) относительно a **, b**2 и с**2, находим численные значения коэффициентов регрессии
Определяется парное корреляционное отношение для связи между скорректированными значениями функции у' и соответствующим аргументом x i. Парное корреляционное отношение является частным корреляционным отношением для связи между фактическими исходными значениями функции у и соответствующим аргументом к. В отличие от парного частное корреляционное отношение будем обозначать индексом h ** уx i , где i— -порядковый номер аргумента, теснота связи с которым оценивается данным корреляционным отношением. Значение частного корреляционного отношения то же, что и коэффициента частной корреляции в случае множественной линейной корреляции.
Частное корреляционное отношение h ** уx i :, определяется аналогично парному корреляционному отношению.
h ** уx i ={ S (y** j - Y)2 / S (y' j - Y)2 } 1/2 ( 37 )Аналогичным путем рассчитываются частные взаимосвязи функции со всеми остальными аргументами.
Рассмотрим еще одну методику определения частной криволинейной регрессии, которая лишена этого недостатка.
ЧАСТНАЯ КРИВОЛИНЕЙНАЯ РЕГРЕССИЯ НА ОСНОВЕ МНОЖЕСТВЕННОЙ НЕЛИНЕЙНОЙ РЕГРЕССИИДля определения уравнения множественной криволинейной регрессии также используется метод наименьших квадратов.
Рассмотрим случай, когда функция зависит от двух аргументов ( x 1 и x 2) аналогично примеру, рассмотренному при oписании множественной линейной корреляции. В системе координат у— X 1— Х2 располагается некое корреляционное пространство, образованное множеством точек , каждая из которых соответствует результатам измерения параметров процесса. Задача состоит в том, чтобы вписать в данное корреляционное пространство некую поверхность, которая удовлетворяла бы условию наименьших квадратов отклонений. Условию наименьших квадратов удовлетворяет поверхность для которой сумма квадратов расстояний до точек корреляционного поля минимальна:
Рекомендуем скачать другие рефераты по теме: профессиональные рефераты, бесплатные доклады.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата