Методы обучения математике в 10 -11 класах
| Категория реферата: Рефераты по математике
| Теги реферата: конспект, предмет культурологии
| Добавил(а) на сайт: Шульц.
Предыдущая страница реферата | 6 7 8 9 10 11 12 13 14 15 16 | Следующая страница реферата
Доведення
Розглянемо функцію f(x) що визначена на проміжку (а, b( та візьмемо ( точку с, що с((а, b).
Дотична до графіка функції f (x) утворює кут ( з додатнім напрямком осі ОХ.
Кут ( - подібний куту (ВАD.
?ВАD – прямокутний, тому [pic]=tg(()=f /(x).
Так як ВD=f(b)-f(а), а АD=b-а, тому
f /(c)=[pic] - отримали формулу Лагранжа.
Вчитель: Яким же чином за заданою функцією ми можемо визначити зростає вона чи спадає в даному інтервалі? Розглянемо ознаки зростання та спадання функції.
Ознака зростання функції:
Якщо функція f(x) неперервна і диференційовна в кожній точці інтервалу (x1; x2) і f /(x) ( 0 на цьому інтервалі, то функція зростає ні цьому інтервалі.
Ознака спадання функції:
Якщо функція f(x) неперервна і диференційовна в кожній точці інтервалу (x1; x2) і f /(x) ( 0 на цьому інтервалі, то функція спадає на цьому інтервалі.
(Доведення цих ознак можна провести в класах з математичним нахилом.
При доведенні використовується теорема Лагранжа)
Вчитель: Для закріплення розв’яжемо приклад.
Приклад.
Як веде себе функція f(x)=x2-8x+12 на проміжках (-(; 4)((4; +().
Дослідження. Знайдемо похідну, критичні точки та дослідимо функцію на кожному з отриманих проміжків: f /(x)=2x-8; тобто x=4 і це є критична точка. На проміжку (-(; 4) похідна має від’ємний знак, тому функція спадає, а на проміжку (4; +() похідна має додатній знак, тому функція на цьому проміжку зростає.
Ми отримали точку х=4, переходячи через яку похідна змінює знак , тобто в цій точці дотична паралельна осі ОХ, а це може бути лише в найвищій або в найнижчій точці. Таку точку називають точкою екстремуму. Похідна функції в цій точці дорівнює нулю, тобто кутовий коефіцієнт рівний нулю.
Точки максимумів та мінімумів функції називають – екстремальними точками.
Означення. Внутрішні точки області визначення функції в яких похідна рівна нулю або не існує – називаються критичними точками.
Вчитель: Виникає питання, а що необхідно для того, щоб існував екстремум функції в даній точці ?
Вчитель: Сформулюємо та доведемо Необхідну умову існування екстремуму функції в точці. (Терема Ферма)
Якщо функція f(x) - неперервна і диференційовна на (а, b) і в точці
x0 ((а, b) має екстремум, то похідна функції в цій точці рівна нулю
f /(x)=0 .
Рекомендуем скачать другие рефераты по теме: диплом формирование, реферат людина.
Категории:
Предыдущая страница реферата | 6 7 8 9 10 11 12 13 14 15 16 | Следующая страница реферата