Модель управления конфликтными потоками в классе алгоритмов
| Категория реферата: Рефераты по математике
| Теги реферата: реферат на тему развитие, титульный лист доклада
| Добавил(а) на сайт: Масмехов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
(2) для .
Обозначим через длину очереди в накопителе по потоку в момент , . Для состояний ОУ предполагаем, что . Случайный точечный процесс при определяется рекуррентным соотношением
(3)
где - отображение множества на числовое множество такое, что . Будем называть длительностью фазы (состояния) обслуживающего устройства, а величину длительностью периода ОУ.
4. Потоки насыщения и выбор стратегии механизма обслуживания.
Обозначим через , максимально возможное число обслуженных на интервале времени требований потока при наличии в накопителе бесконечной очереди. Тогда соответствующий поток насыщения может быть описан с помощью маркированного точечного процесса, где метка обслуженных заявок на интервале . Интерпритировать подобное описание можно как влияние погодных условий (состояния случайной среды) на механизм обслуживания. Более подробно этот процесс будет рассмотрен ниже. Мы не будем задавать конечномерные распределения маркированных точечных процессов и поскольку при нелокальном описании входных потоков и потоков насыщения можно ограничеться некоторыми свойствами условных распределений дискретных компонент и .
Допустим, что величина задает на промежутке число фактически обслуженных заявок потока . Для описания реального процесса обслуживания нужно при любом и каждом указать зависимость
(4)
то есть некоторую стратегию механизма обслуживания. На выбор функции (4) естественно наложить следующие ограничения:
;
;
Откуда получим:
; (5)
Автомат, как правило, за промежуток времени обслуживает максимально возможное число машин из потока или все поступающие и находящиеся в очереди машины этого потока, если их число меньше .
Тогда зависимость (4) будет иметь вид:
(6)
Такая стратегия механизма обслуживания, учитывая (5), называется экстремальной.
5. Рекуррентные соотношения для маркированного точечного процесса обслуживания. Свойства условных распределений для дискретных компонент , соответствующих входным потокам и потокам насыщения.
Будем описывать поведение системы маркированным точечным процессом с выделенной дискретной компонентой , где - вектор длин очередей по потокам в момент . Для процесса основываясь на равенствах (1)-(3), имеет место следующее рекуррентное соотношение:
(7)
где , ,. Здесь векторное соотношение предполагает выполнение равенств при . Принимая во внимание выбранную нами экстремальную стратегию обслуживания , имеем:
Для изучения вероятностных свойств метки остановимся на некоторых свойствах условных распределений величин и . Полагаем что в этой модели при фиксированных значениях метки случайные величины и независимы и их условные распределения при любом и при удовлетворяют соотношениям:
Рекомендуем скачать другие рефераты по теме: доклад образование, контрольные 5 класс.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата