Морфологический анализ цветных (спектрозональных) изображений
| Категория реферата: Рефераты по математике
| Теги реферата: закон реферат, реферат молодежь
| Добавил(а) на сайт: Свирид.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
,(2)
в котором почти для всех , , - m -измеримые функции на поле зрения X, такие, что
.
Цветные изображения образуют подкласс функций лебеговского класса функций . Класс цветных изображений обозначим LE,n.
Впрочем, для упрощения терминологии далее любой элемент называется цветным изображением, а условие
(2*)
условием физичности изображений f(× ).
Если f - цветное изображение (2), то , как нетрудно проверить, - черно-белое изображение [2], т.е. , . Изображение , назовем черно-белым вариантом цветного изображения f, а цветное изображение , f(x)¹ 0, xÎ X - цветом изображения f. В точках множества Â={xÎ X: f(x)=0} черного цвета (x), xÎ В, - произвольные векторы из , удовлетворяющие условию: яркость (x)=1. Черно-белым вариантом цветного изображения f будем также называть цветное изображение b(× ), имеющее в каждой точке Х ту же яркость, что и f, b(x)=f(x), xÎ X, и белый цвет, b (x)=b(x)/b(x)=b , xÎ X.
3. Форма цветного изображения.Понятие формы изображения призвано охарактеризовать форму изображенных объектов в терминах характерности изображений, инвариантных относительно определенного класса преобразований изображения, моделирующих меняющиеся условия его регистрации. Например, довольно часто может меняться освещение сцены, в частности, при практически неизменном спектральном составе может радикально изменяться распределение интенсивности освещения сцены. Такие изменения освещения в формуле (2**) выражаются преобразованием , в котором множитель k(x) модулирует яркость изображения в каждой точке при неизменном распределении цвета. При этом в каждой точке у вектора f(x) может измениться длина, но направление останется неизменным.
Нередко изменение распределения интенсивности освещения сопровождается значительным изменением и его спектрального состава, но - пространственно однородным, одним и тем же в пределах всей изображаемой сцены. Поскольку между спектром излучения e и цветом j нет взаимно однозначного соответствия, модель сопутствующего преобразования изображения f(x) в терминах преобразования его цвета j (× ). Для этого определим отображение A(× ):, ставящее в соответствие каждому вектору цвета подмножество поля зрения в точках которого изображение , имеет постоянный цвет .
Пусть при рассматриваемом изменении освещения и, соответственно, ; предлагаемая модель преобразования изображения состоит в том, что цвет преобразованного изображения должен быть также постоянным на каждом множестве A(j ), хотя, вообще говоря, - другим, отличным от j . Характекрным в данном случае является тот факт, что равенство влечет . Если - самое детальное изображение сцены, то, вообще говоря, на различных множествах A(j ¢ ) и A(j ) цвет изображения может оказаться одинаковым.
Как правило, следует учитывать непостоянство оптических характеристик сцены и т.д. Во всех случаях форма изображения должна быть инвариантна относительно преобразования из выделенного класса и, более того, должна определять изображение с точностью до произвольного преобразования из этого класса.
Для определения понятия формы цветного изображения f(× ) на удобно ввести частичный порядок p , т.е. бинарное отношение, удовлетворяющее условиям: 1), 2) , , то , ; отношение p должно быть согласованным с определением цветного изображения (с условием физичности), а именно, , если . Отношение p интерпретируется аналогично тому, как это принято в черно-белой морфологии[2], а именно, означает, что изображения fиg сравнимы по форме, причем формаgне сложнее, чем форма f. Если и , то fи g назовем совпадающими по форме (изоморфными), f ~ g. Например, если fи g - изображения одной и той же сцены, то g, грубо говоря, характеризует форму изображенных объектов не точнее (подробнее, детальнее), чем f, если .
В рассматриваемом выше примере преобразования изображений если между множествами A(j ), и A¢ (j ¢ ), существует взаимно-однозначное соответствие, т.е., если существует функция , такая, что A¢ (j ¢ (j ))= A(j ),, причем, если . В этом случае равенства и эквивалентны, и изоморфны и одинаково детально характеризуют сцену, хотя и в разных цветах.
Если же не взаимно однозначно, то A¢ (j ¢ )=U A(j ) и . В этом случае равенство влечет (но не эквивалентно) , передает, вообще говоря, не все детали сцены, представленные в .
Пусть, скажем, g - черно-белый вариант f, т.е. g(x)=f(x) и g(x)/g(x)=b , xÎ X. Если преобразование - следствие изменившихся условий регистрации изображения, то, естественно, . Аналогично, если fgизображения одной и той же сцены, но в gвследствие неисправности выходные сигналы некоторых датчиков равны нулю, то . Пусть F - некоторая полугруппа преобразований , тогда для любого преобразования FÎ F , поскольку, если некоторые детали формы объекта не отражены в изображении f, то они, тем более, не будут отражены в g.
Формой изображения f назовем множество изображений , форма которых не сложнее, чем форма f`, и их пределов в (черта символизирует замыкание в ). Формой изображения fв широком смысле назовем минимальное линейное подпространство , содержащее . Если считать, что для любого изображения , то это будет означать, что отношение p непрерывно относительно сходимости в в том смысле, что .
Рассмотрим теперь более подробно понятие формы для некоторых характерных классов изображений и их преобразований.
4. Форма кусочно-постоянного (мозаичного) цветного изображения.Во многих практически важных задачах форма объекта на изображении может быть охарактеризована специальной структурой излучения, достигающего поле зрения X в виде здесь - индикаторные функции непересекающихся подмножеств Аi, i=1,…...,N, положительной меры поля зрения Х, на каждом из которых функции , , j=1,...,n, i=1,...,N, непрерывны. Поскольку согласно лемме 2
,(3)ы
то цветное изображение fe, такого объекта характеризует его форму непрерывным распределением яркости и цвета на каждом подмножестве Ai, i=1,...,N. Для изображения , где , также характерно напрерывное распределение яркости и цвета на каждом Ai, если , - непрерывные функции.
Если, в частности, цвет и яркость постоянны на Ai, i=1,...,N, то это верно и для всякого изображения , если не зависит явно от . Для такого изображения примем следующее представление:
,(4)
его черно-белый вариант
(4*)
Рекомендуем скачать другие рефераты по теме: оформление доклада титульный лист, понятие культуры.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата