Пpиближения непpеpывных пеpиодических фyнкций тpигонометpическими полиномами
| Категория реферата: Рефераты по математике
| Теги реферата: реферати українською, возрождение реферат
| Добавил(а) на сайт: Pogrebnjak.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Подстановка u=cos(x) сводит задачу 1 к задаче 2. Достаточно, следовательно, рассматривать лишь задачу 2.
Мы ограничимся случаем, когда N , для некоторого , где - функция сравнения р-го порядка и для 0<<
С.Н.Бернштейн, Д.Джексон и Ш.Валле-Пуссен получили зависимости между оценками сверху для En[f] и дифференциальными свойствами f. Некоторые дополнения к их теоремам доказаны А.Зигмундом. нам предстоит, поэтому, получить зависимости между дифференциальными свойствами f и оценками En[f] снизу. Впервые задачами типа 1 занимался С.Н.Бернштейн. А именно, им получено ассимптотическое равенство:
,
где - некоторое число.
Наша основная теорема формулируется следующим образом:
Пусть N Для того чтобы
необходимо, чтобы для любого натурального k>, и достаточно, чтобы для некоторого натурального k>
где
Изложим теперь кратко содержание каждого из параграфов работы.
В §1 даётся ряд вспомогательных определений, которые понадобятся в дальнейшей работе.
В §2 выводятся основные свойства модулей непрерывности высших порядков. Почти все эти свойства используются в дальнейшем тексте.
§3 посвящен обобщению теоремы Джексона. Как известно, Джексон доказал следующую теорему: если f имеет непрерывную r-ую производную f (r) , то
Таким образом, теорема Джексона дает оценку сверху для наилучших приближений, если известны дифференциальные свойства аппроксимируемой функции.
В 1947 г. появилась работа С.Н.Бернштейна [1]. Одна из теорем этой работы содержит в качестве следствия такое предложение: пусть
Тогда
В §3 доказываем:
(*)
Рекомендуем скачать другие рефераты по теме: аристотель реферат, международный реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата