Пpиближения непpеpывных пеpиодических фyнкций тpигонометpическими полиномами
| Категория реферата: Рефераты по математике
| Теги реферата: реферати українською, возрождение реферат
| Добавил(а) на сайт: Pogrebnjak.
Предыдущая страница реферата | 4 5 6 7 8 9 10 11 12 13 14 | Следующая страница реферата
Определение 10. Зафиксируем число >0 и обозначим через p наименьшее натуральное число, не меньше чем (p=-[-]). Будем говорить, что функция принадлежит к классу , если она
1) есть функция сравнения p-го порядка и
2) удовлетворяет условию: существует константа С11>0 такая, что для
Условие 2) является небольшим ослаблением условия “ не убывает”. Функции класса N будут играть основную роль во всём дальнейшем изложении.
Определение 11. Будем говорить, что функция имеет порядок , если найдутся две положительные константы С12 и С13 такие, что для всех t, для которых определены функции и ,
.
При выполнении этих условий будем писать
.
Определение 12. Ядром Дирихле n-го порядка называется функция
(1.10)
Это ядро является тригонометрическим полиномом порядка n и при этом
(1.10’)
Определение 13. Ядром Фейера n-го порядка называется функция
(1.11)
Ядро Фейера Fn(t) является средним арифметическим первых n ядер Дирихле, и значит, является тригонометрическим полиномом порядка (n-1). Так что имеют место равенства
(1.11’)
(1.11’’)
где Dk(t)-ядра Дирихле.
Определение 14. Ядром Джексона n-го порядка называется функция
(1.12)
Свойства ядер Джексона.
а) При каждом n ядро Jn(t) является чётным неотрицательным тригонометрическим полиномом порядка 2n-2 вида
,
где jk=jk(n) - некоторые числа
Рекомендуем скачать другие рефераты по теме: аристотель реферат, международный реферат.
Категории:
Предыдущая страница реферата | 4 5 6 7 8 9 10 11 12 13 14 | Следующая страница реферата