Решение систем дифференциальных уравнений методом Рунге-Куты 4 порядка
| Категория реферата: Рефераты по математике
| Теги реферата: конспект, реферат методы
| Добавил(а) на сайт: Juferev.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
9. Инструкция к программе…………………………...23
10. Заключение………………………………………….27
Литература
Введение
Обыкновенные дифференциальные уравнения (ОДУ) широко используются для математического моделирования процессов и явлений в различных областях науки и техники. Переходные процессы в радиотехнике, кинетика химических реакций, динамика биологических популяций, движение космических объектов, модели экономического развития исследуются с помощью ОДУ.
В дифференциальное уравнение n-го порядка в качестве неизвестных величин входят функция y(x) и ее первые n производных по аргументу x
(( x, y, y1, ... y(n) )=0.
1.1
Из теории ОДУ известно, что уравнение (1.1) эквивалентно системе n уравнений первого порядка
(k(x, y1, y1’ ,y2 ,y2 ’, ... ,yn ,yn ’)=0.
1.2
где k=1, ... , n.
Уравнение (1.1) и эквивалентная ему система (1.2) имеют бесконечное множество решений. Единственные решения выделяют с помощью дополнительных условий, которым должны удовлетворять искомые решения. В зависимости от вида таких условий рассматривают три типа задач, для которых доказано существование и единственность решений.
Первый тип – это задачи Коши, или задачи с начальными условиями. Для таких задач кроме исходного уравнения (1.1) в некоторой точке xo должны быть заданы начальные условия, т.е. значения функции y(x) и ее производных
y(x0)=y0’ , y’(x0)=y10, ... , y(n-1)(x0)=yn-1,0.
Для системы ОДУ типа (1.2) начальные условия задаются в виде
y1(x0)=y10 , y2(x0)=y20, ... , yn(x0)=yn0.
1.3
Ко второму типу задач относятся так называемые граничные, или краевые задачи, в которых дополнительные условия задаются в виде функциональных соотношений между искомыми решениями. Количество условий должно совпадать с порядком n уравнения или системы. Если решение задачи определяется в интервале x є (x0 ,xk(, то такие условия могут быть заданы как на границах, так и внутри интервала. Минимальный порядок ОДУ, для которых может быть сформулирована граничная задача, равен двум.
Третий тип задач для ОДУ – это задачи на собственные значения. Такие задачи отличаются тем, что кроме искомых функций y(x) и их производных в уравнения входят дополнительно m неизвестных параметров (1((2((( хm( которые называются собственными значениями( Для единственности решения на интервале [x0(xk] необходимо задать m+n граничных условий( В качестве примера можно назвать задачи определения собственных частот( коэффициентов диссипации( структуры электромагнитных полей и механических напряжений в колебательных системах( задачи нахождения фазовых коэффициентов( коэффициентов затухания( распределения напряженностей полей волновых процессов и т(д(
К численному решению ОДУ приходится обращаться( когда не удается построить аналитическое решение задачи через известные функции( Хотя для некоторых задач численные методы оказываются более эффективными даже при наличии аналитических решений(
Большинство методов решения ОДУ основано на задаче Коши( алгоритмы и программы для которой рассматриваются в дальнейшем(
1. Постановка задачи
Многие процессы химической технологии описываются СДУ - начиная от
кинетических исследований и заканчивая химическими технологическими
процессами( В основу математических способов описания процессов положены
СДУ и СЛАУ( Эти уравнения описывают материальные и тепловые балансы
объектов химической технологии( а так же структуры потоков технических
веществ в этих аппаратах(
Для получения( распределения технологических параметров во времени и в пространстве (в пределах объекта)( необходимо произвести СДУ методом( которых дал бы высокую точность решения при минималььных затратах времени на решение( потому что ЭВМ должна работать в режиме реального времени и успевать за ходом технологического процесса( Если время на решение задачи большое( то управляющее воздействие( выработанное на ЭВМ может привести к отрицательным воздействиям( Методов решения существует очень много( В данной работе будет рассмотрен метод решения СДУ методом Рунге-Кутта 4 порядка.
Для удобства работы на ЭВМ, необходимо данную кинетическую схему преобразовать в удобный для работы на компьютере вид. Для этого необходимо кинетическую схему процесса представить в виде уравнений. При рассмотрении кинетической схемы процесса необходимо учитывать коэффициенты скоростей реакций. Но, так как процесс протекает при изотермических условиях, коэффициенты скоростей реакций можно считать за константы скоростей химической реакции. Из приведенной ниже схемы мы можем составить ряд дифференциальных уравнений, учитывающих изотермичность процесса.
Рекомендуем скачать другие рефераты по теме: сочинение описание, отечественная война реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата