Теория устойчивости
| Категория реферата: Рефераты по математике
| Теги реферата: математика, решебник по английскому языку
| Добавил(а) на сайт: Сухих.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата
где F ( t , y ) = f ( t , y ( t ) + x ( t ) ) - f ( t , x ( t ) ) , F (t, 0) º 0 " t ³ t0.
Решению x ( t ) системы (1) соответствует нулевое решение y (t) º 0 системы (4).
В дальнейшем будем предполагать, что система (1) имеет нулевое решение, т.е. f ( t , 0 ) = 0 " t ³ t0, и ограгничимся исследованием устойчивости нулевого решения. Переформулируем определения различных типов устойчивости для нулевого решения x ( t ) º 0 системы (1).
Определение 3. Нулевое решение x ( t ) º 0 системы (1) называется устойчивым по Ляпунову в положительном направлении (или устойчивым), если " e > 0 $ d = d ( e ) > 0 такое, что " x0
| D x0 | £ d Þ | x ( t ; t0 , x0 ) | £ e " t ³ t0.
Если кроме того,
$ D > 0 " x0 | D x0 | £ D Þ | x ( t ; t0 , x0 ) | ® 0 , t ® + ¥ ,
то решение x ( t ) º 0 системы (1) называется асимптотически устойчивым в положительном направлении ( или асимптотически устойчивым ) .
Определение 4. Нулевое решение x ( t ) º 0 системы (1) называется неустойчивым по Ляпунову в положительном направлении (или неустойчиво), если оно не является устойчивым в положительном направлении, т.е.
$ e > 0 $ t1 > t0 " d > 0 x0 ¹ 0 | x0 | £ d Þ | x ( t ; t0 , x0 ) | > e .
Геометрическая интерпритация устойчивости, асимптотической устойчивости и неустойчивости нулевого решения x ( t ) º 0 системы (1) дана соответственно на рис.5-7.
Рекомендуем скачать другие рефераты по теме: шпоры бесплатно, культура конспект.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата