Треугольник РЕЛО (Трикутник Рьоло)
| Категория реферата: Рефераты по математике
| Теги реферата: банк курсовых, договора диплом
| Добавил(а) на сайт: Гайденко.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
- серединний трикутник (щодо трикутника АВС) – трикутник, побудований шляхом з'єднання середин сторін даного трикутника АВС;
- різницевий трикутник – трикутник, довжини сторін якого складають арифметичну прогресію;
- бісектральний трикутник – трикутник, вершинами якого є точки перетину бісектрис даного трикутника АВС із протилежними сторонами.
З розвитком науки про трикутники в побут учених (та й не тільки їх) увійшли характерні назви деяких точок і ліній трикутника:
- чевіана – відрізок, що з'єднує вершину трикутника з деякою точкою на протилежній стороні;
- висота – чевіана, опущена під прямим кутом на протилежну сторону трикутника;
- бісектриса – чевіана, що поділяє навпіл кут при даній вершині, з якої вона опущена;
- медіана – чевіана, що з'єднує вершину трикутника із серединою протилежної сторони;
- центр кола, описаного навколо трикутника, - точка перетину трьох перпендикулярів, що поділяють навпіл сторони трикутника;
- центр кола, вписаного в трикутник, - точка перетину бісектрис трикутника;
- ортоцентр трикутника АВС – центр кола, вписаного в ортоцен-тричний трикутник відносно трикутника АВС;
- центроїд – точка, що поділяє відстань від ортоцентра до центра описаного навколо трикутника кола у відношенні 2:1;
- пряма Ейлера – пряма, що з'єднує ортоцентр, центроїд і центр описаного навколо трикутника кола;
- коло дев'яти точок (коло Ейлера) – коло, на якому лежали основи трьох висот довільного трикутника, середини трьох його сторін і середини трьох відрізків, що з'єднують його вершини з ортоцентром.
Потреба в дослідженні характерних точок і ліній трикутників виникла як з наукової цікавості, так і з чисто практичними цілями. І якщо в стародавності найбільш широко використовувався на практиці прямокутний трикутник Піфагора (різницевий трикутник зі спів-відношенням сторін 3:4:5), то в наш час найбільший інтерес викликають незвичайні властивості так званого трикутника Рьоло.
1. Кінематична властивість трикутника Рьоло
Цей криволінійний трикутник А1В1С1 (див. рис.1) названий на честь німецького математика та інженера Франца Рьоло, який найбільш повно вивчив його властивості.
Рис.1. Схема окреслення чотирикутника
обертанням трикутника Рьоло
Побудувати трикутник Рьоло досить просто. З кожної вершини рівностороннього трикутника слід провести дугу кола, що з'єднує дві інші вершини. Отриманий криволінійний трикутник відноситься (поряд з колом) до так званих кривих постійної ширини: коли він котиться, верхні і нижні точки контуру переміщуються вздовж паралельних прямих.
1. Окреслення чотирикутника складеним обертанням трикутника Рьоло
Але найбільш відома кінематична властивість трикутника Рьоло. Якщо обертати трикутник А1В1С1 навколо центра О1 описаного навколо нього кола з радіусом О1А1, а центр трикутника О1 обертати в протилежну сторону в три рази швидше по колу з центром N, то трикутник окреслить фігуру, що незначно відрізняється за формою від чотирикутника (рис.1). Зокрема, за один оберт центра О1 направо по колу з радіусом О1N два кути чотирикутника будуть оформлені вершиною А трикутника Рьоло і по одному – вершинами В і С, тобто через кожну чверть оберту навколо центру N трикутник Рьоло буде знаходитися в положеннях А2В2С2, А3В3С3 і А4В4С4.
Однак виконані на рис.1 побудови показують невелику кривину сторін
чотирикутника, про яку також вказують інженери-експери-ментатори [4, 5]. За
їхніми даними, найбільше відхилення сторони чотирикутника А1А4 від
ідеальної прямої має місце в точці D, для якої справедлива рівність А1D =
А4D. Трикутник Рьоло при обертанні контак-тує з точкою D серединою своєї
сторони.
З’ясуємо, як обчислити це відхилення. Позначимо: R – радіус описаного біля трикутника Рьоло кола; r = O1N. Тоді
А1В1=А2В2=А3В3=А4В4= R[pic],
Рекомендуем скачать другие рефераты по теме: изложение гиа, конспекты 8 класс.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата