Уравнения и способы их решения
| Категория реферата: Рефераты по математике
| Теги реферата: новшество, шпаргалки бесплатно
| Добавил(а) на сайт: Рубашкин.
Предыдущая страница реферата | 8 9 10 11 12 13 14 15 16 17 18 | Следующая страница реферата
Уравнения, которые решаются
Хотят уравнения высоких степеней в общем случае неразрешимы в радикалах, да и формулы Кардано и Феррари для уравнений третьей и четвертой степеней в школе не проходят, в учебниках по алгебре, на вступительных экзаменах в институты иногда встречаются задачи, где требуется решить уравнения выше второй степени. Обычно их специально подбирают так, чтобы корни уравнений можно было найти с помощью некоторых элементарных приемов.
В основе одного из таких приемов лежит теорема о рациональных корнях многочлена:
Если несократимая дробь является корнем многочлена с целыми коэффициентами, то ее числитель является делителем свободного члена , а знаменатель - делителем старшего коэффициента .
Для доказательства достаточно подставить в уравнение и умножить уравнение на . Получим
.
Все слагаемые в левой части, кроме последнего, делятся на , поэтому и делится на , а поскольку и - взаимно простые числа, является делителем . Доказательство для аналогично.
С помощью этой теоремы можно найти все рациональные корни уравнения с целыми коэффициентами испытанием конечного числа "кандидатов". Например, для уравнения
,
старший коэффициент которого равен 1, "кандидатами" будут делители числа –2. Их всего четыре: 1, -1, 2 и –2. Проверка показывает, что корнем является только одно из этих чисел: .
Если один корень найден, можно понизить степень уравнения. Согласно теореме Безу,
остаток от деления многочлена на двучлен равен , т. е. .
Из теоремы непосредственно следует, что
Если - корень многочлена , то многочлен делится на , т. е. , где - многочлен степени, на 1 меньшей, чем .
Продолжая наш пример, вынесем из многочлена
множитель . Чтобы найти частное , можно выполнить деление "уголком":
Рекомендуем скачать другие рефераты по теме: отчет о прохождении практики, ответы 7 класс.
Категории:
Предыдущая страница реферата | 8 9 10 11 12 13 14 15 16 17 18 | Следующая страница реферата