Уравнения и способы их решения
| Категория реферата: Рефераты по математике
| Теги реферата: новшество, шпаргалки бесплатно
| Добавил(а) на сайт: Рубашкин.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата
5) ().
Уравнение имеет один дествительный корень и два комплексных корня
.
6) ().
Уравнение действительных корней не имеет. Комплексные корни:
, .
Кубические уравнения
Если квадратные уравнения умели решать еще математики Вавилонии и Древней Индии, то кубические, т.е. уравнения вида
, где ,
оказались "крепким орешком". В конце XV в. профессор математики в университетах Рима и Милана Лука Пачоли в своем знаменитом учебнике "Сумма знаний по арифметике, геометрии, отношениям и пропорциональности" задачу о нахождении общего метода для решения кубических уравнений ставил в один ряд с задачей о квадратуре круга. И все же усилиями итальянских алгебраистов такой метод вскоре был найден.
Начнем с упрощения
Если кубическое уравнение общего вида
, где ,
разделить на , то коэффициент при станет равен 1. Поэтому в дальнейшем будем исходить из уравнения
. (11)
Так же как в основе решения квадратного уравнения лежит формула квадрата суммы, решение кубического уравнения опирается на формулу куба суммы:
Чтобы не путаться в коэффициентах, заменим здесь на и перегруппируем слагаемые:
. (12)
Мы видим, что надлежащим выбором , а именно взяв , можно добиться того, что правая часть этой формулы будет отличаться от левой части уравнения (11) только коэффициентом при и свободным членом. Сложим уравнения (11) и (12) и приведем подобные:
.
Если здесь сделать замену , получим кубическое уравнение относительно без члена с :
.
Итак, мы показали, что в кубическом уравнении (11) с помощью подходящей подстановки можно избавиться от члена, содержащего квадрат неизвестного. Поэтому теперь будем решать уравнение вида
. (13)
Рекомендуем скачать другие рефераты по теме: отчет о прохождении практики, ответы 7 класс.
Категории:
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата