Литография
| Категория реферата: Промышленность, производство
| Теги реферата: правовые рефераты, реферат
| Добавил(а) на сайт: Javorov.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата
Рис. 23. Эффект полутени в рентгеновской теневой печати, обусловленный недостаточной коллимацией пучка,
Ошибки, связанные с зазором, можно отчасти устранить, если перейти к пошаговому экспонированию либо повысить чувствительность резиста до 1 мДж/см2, что позволит удалить источник излучения от пластины. Главные трудности связаны с термостабильностью шаблона, так как нагрев шаблона экспонирующем излучением приводит к изменению размеров элементов в плане и ошибкам совмещения.
Из-за малого поглощения время рентгеновского экспонирования чрезвычайно велико. Первыми шагами к совершенствованию рентгеновской печати (с зазором) является создание:
1) высокочувствительных резистов;
2) интенсивного источника;
3) точной и надежной системы совмещения;
4) прозрачного и стабильного шаблонов.
Рис. 24. Зависимость ширины проявленной линии от расстояния между поверхностью резиста и рентгеновским шаблоном.
В рентгеновской литографии шаблон при совмещении помещается над пластиной с зазором 10 мкм для увеличения его срока службы. Поскольку длина волны рентгеновского излучения мала, можно пренебречь дифракционными эффектами и оперировать простыми геометрическими представлениями при формировании рисунка на шаблоне. Непрозрачные участки шаблона затеняют пластину под шаблоном, но край тени получается не совсем резким из-за конечных размеров (S) источника рентгеновского излучения (диаметр пятна сфокусированных на аноде электронов), находящегося на расстоянии D от шаблона. Если зазор между шаблоном и пластиной обозначить через g, то ширина области полутени равна :
s =g(S/D) (29)
Типичные значения: g=20 мкм, S=3 мм, D=30 см. При этом разрешающая способность определяется (1) шириной области полутени s , (2) минимально возможной шириной линии на шаблоне и (3) контрастностью резиста. В высококонтрастных резистах края изображения могут быть существенно более резкими, чем это задается значением s . При увеличении зазора между шаблоном и пластиной уход размера изображения на пластине и время экспонирования возрастают. Чтобы уменьшить боковые искажения в случае точечного источника, использовался шаблон с наклоненными к его центру поглощающими элементами. Мощность обычных источников сравнительно мала:
Источники обычного типа 0.1-1.0 мВт/см2
Импульсные 10-100 мВт/см2
Синхротрон 100-1000 мВт/см2
Поскольку в качестве шаблона используется сплошная полупрозрачная мембрана, то, по крайней мере, 50% излучения поглощается шаблоном. Для сбалансированности между контрастностью проходящего пучка и временем экспонирования (интенсивность) лишь малая часть рентгеновского излучения должна проходить сквозь непрозрачные участки шаблона. Минимальный контраст между прозрачным и непрозрачным участками шаблона для экспонирования резиста составляет 4:1 (модуляция 60%). Вторичные электроны, испускаемые поглощающими элементами из золота, могут вызывать “размывание” края изображения. Для ослабления эмиссии вторичных электронов применяется покрытие из полиимида поверх золотого рисунка, поглощающее выбитые фотоэлектроны, иначе уход размера может достигать 0.2-0.4 мкм. При взаимодействии рентгеновского излучения с подложкой вторичные фотоэлектроны, имеющие небольшую длину пробега, рассеиваются в обратном направлении, что может вызывать уширение основания изображения в позитивном резисте.
Для того чтобы рентгеновская литография стала технологичной, нужно решить ряд важных проблем. Для достижения хотя бы минимальной приемлемой производительности 2-5 пластин диаметром 125 мм в час требуется резист с чувствительностью не хуже 1 мДж/ см2 для обычных (возбуждаемых электронным пучком) рентгеновских источников.
Ионные пучки.
Литографическое применение ионных пучков возможно: в установках пошаговой печати; в системах, использующих фокусированные пучки протонов, ионов Si+, В, Р.
Главным достоинством ионных пучков по сравнению с электронными является малое обратное рассеяние и, следовательно, минимальный эффект близости.
В ионно-лучевой литографии используются шаблоны типа металл на кремний или трафаретные. В случае применения последних произвольный рисунок можно воспроизвести, используя взаимодополняющие трафаретные шаблоны.
Для того чтобы ионная литография могла конкурировать с рентгеновской литографией, необходимо создать компактный источник ионов. Здесь пригодны схемы совмещения, разработанные для установок рентгеновской литографии. Из-за эффектов полутени и коробления пластины следует избегать экспонирования больших областей.
Фокусированные ионные пучки можно использовать для экспонирования резистов, исправления дефектов фотошаблонов, а также в безрезистной литографии и непосредственного травления оксида кремния.
Сущность ионной литографии состоит в экспонировании пластины широким пучком ионов Н+, Не2+ или Ar+ через шаблон из золота на кремниевой мембране или поточечного экспонирования сканирующим пучком из жидкометаллического (Ga) источника. Зазор между шаблоном и пластиной составляет около 20 мкм, но для субмикронных процессов требуется контакт, так как изолированные элементы изображения не могут быть экспонированы через сквозной шаблон, а составные шаблоны разделяются на две взаимодополняющие части.
Поскольку ионы поглощаются в 10-100 раз эффективнее, чем электроны, то и требуется их в 10-100 раз меньше (1010-1012 ионов/cм2 ли 0.01-1 мкКл/см2). Хорошая корреляция между экспонированием протонами и электронами была продемонстрирована Бро и Миллером. Так как источник протонов может давать пучок с плотностью мощности более 100 мВт/см2 (> 1 А/ см2), то малое время экспонирования (в микросекундах на кристалл или секундах на пластину) обеспечивает стабильность шаблона и субмикронное совмещение. Изображения с вертикальным профилем края (искажение края профиля < 0.1 мкм, обусловленное отклонениями при изготовлении шаблона) могут быть сформированы как в негативных, так и в позитивных резистах. Даже десятикратное переэкспонирование не вызывает изменения ширины линий. Взаимный эффект близости ярко выраженный при ЭЛ-экспонировании, не наблюдается благодаря малости обратного рассеяния протонов.
Сфокусированные ионные пучки для прямого (без шаблона) экспонирования резистов имеют ограниченное применение, так как размер поля экспонирования не превышает 1 мм2. При сканировании ионного пучка его отклонение происходит медленнее по сравнению с электронным пучком, а разрешающая способность объектива (МПФ) оказывается не лучше 1 мкм в кристалле 5´ 5 мм. В настоящее время ионные пучки используются в основном для ретуширования фотошаблонов. Другая область применения металлических ионных источников (таких, как Si или Ga) - имплантация в поверхностный слой ПММА толщиной всего 100 нм. Поскольку ионно-имплантированный резист устойчив к травлению в кислородной плазме, то изображение обращается и переносится в ПММА с помощью РИТ.
При исследовании разрешающей способности позитивных резистов в случае ионно-лучевого экспонирования понятие контрастности g используется для оценки характеристик скрытого изображения в резисте:
g =dR/dZ=(dR/dE)(dE/dZ) (30)
Первый сомножитель в правой части характеризует скорость проявления пленки, а второй - описывает распределение энергии Е по глубине Z. Хотя боковое рассеяние мало, контрастность ПММА не выше, чем при ЭЛ-экспонировании. Бро и Миллер установили, что g =2.2 как для протонов, поглощенных в ПММА, так и для электронов с энергией 20 кэВ. Пробег вторичных частиц составляет всего около 10 нм для 100-кэВ Н+ и около 500 нм для 20-кэВ электронов.
Дополнительная область применения ионно-лучевого экспонирования - отверждение резистов ДХН и ПММА для реактивного ионного травления или других применений в качестве маски. При ионной имплантации В, Р или As резист со скрытым изображением работает как барьерный слой.
Ионно-лучевое экспонирование является идеальным в том смысле, что для него прямое и обратное рассеяния пренебрежимо малы, а радиационные повреждения в кремниевой подложке практически отсутствуют, так как ионы в основном не проходят сквозь слой резиста. Поскольку ионы очень эффективно передают в резист энергию, то чувствительность резиста не является решающим фактором для производительности, которую в данном случае обеспечивают подбором подходящего высокоинтенсивного источника ионов, термостабильного шаблона и высокой точностью совмещения (± 0.1 мкм).
Заключение.
В табл. 5 приведены результаты сравнения всех типов экспонирующего оборудования и используемых в нем шаблонов. Доминирующим является УФ-экспонирование, за ним следует электронно-лучевое. Для рентгеновского и ионно-лучевого экспонирования необходим еще один этап усовершенствования. Реально ширина экспонируемой линии примерно в 4 раза превышает точность совмещения.
Если размер элементов рисунка превышает 1 мкм и требуется большой объем производства однотипных изделий, то пригодны 1´ -зеркальные сканеры, имеющие высокую производительность и достаточную точность совмещения. Ниже 1-мкм барьера и примерно до 0.6 мкм конкурируют установки пошагового экспонирования с преломляющей оптикой (5´ -объектив для экспонирования на длине волны 365 нм) и установки пошагового экспонирования со сканированием. При изготовлении 1´ -шаблонов возникают серьезные проблемы, такие, как дефектность и невозможность выдержать размеры на всей поверхности (250´ 250 мм) стеклянной пластины. Сделана попытка расширить возможности оптической литографии на диапазон размеров 0.6-0.3 мкм с помощью отражательных установок пошагового ДУФ-экспонирования с 3-5´ -уменьшением. Что касается размеров менее 0.3 мкм, то массовое производство схем памяти обеспечивается печатью с зазором с применением либо рентгеновских, либо электронных пучков. Электронные пучки применяются для изготовления традиционных заказных схем и комплектов шаблонов для всех остальных видов экспонирования.
Таблица 5. Сравнение экспонирующего оборудования
и соответствующих ему шаблонов и резистов.
I |
II |
III |
IV |
V |
VI |
VII |
Категории:Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата Поделитесь этой записью или добавьте в закладки |